11,369 research outputs found

    Drop Formation in a One-Dimensional Approximation of the Navier-Stokes Equation

    Get PDF
    We consider the viscous motion of a thin, axisymmetric column of fluid with a free surface. A one-dimensional equation of motion for the velocity and the radius is derived from the Navier-Stokes equation. We compare with recent experiments on the breakup of a liquid jet and on the bifurcation of a drop suspended from an orifice. The equations form singularities as the fluid neck is pinching off. The nature of the singularities is investigated in detail

    Normalization of bundle holomorphic contractions and applications to dynamics

    Get PDF
    We establish a Poincar\'e-Dulac theorem for sequences (G_n)_n of holomorphic contractions whose differentials d_0 G_n split regularly. The resonant relations determining the normal forms hold on the moduli of the exponential rates of contraction. Our results are actually stated in the framework of bundle maps. Such sequences of holomorphic contractions appear naturally as iterated inverse branches of endomorphisms of CP(k). In this context, our normalization result allows to precisely estimate the distortions of ellipsoids along typical orbits. As an application, we show how the Lyapunov exponents of the equilibrium measure are approximated in terms of the multipliers of the repulsive cycles.Comment: 29 pages, references added, to appear in Ann. Inst. Fourie

    Influence of Nd on the magnetic properties of Nd1-xCaxMnO3

    Full text link
    The role played by the Nd ions in the magnetic properties of Nd0.5Ca0.5MnO3 and Nd0.7Ca0.3MnO3 is studied using static magnetization, neutron diffraction and high frequency (9.4-475GHz) Electron Spin Resonance. We show that the Nd ions are weakly coupled to the Mn ions via ferromagnetic exchange and are responsible for the peculiar ferromagnetic resonance observed in the FM phase of both compounds (ground state below 120K for x=0.3, high field state for x=0.5). We then use ESR to look for magnetic phase separation in the low field, CO phase of Nd0.5Ca0.5MnO3. We show that there is no trace of the FM phase imbedded in the CO phase, contrary to what is observed in La0.5Ca0.5MnO3 or Pr0.5Sr0.5MnO3.Comment: to be published in phys.Rev.B as a Rapid Com

    Squad management, injury and match performance in a professional soccer team over a Championship-winning season

    Get PDF
    Squad management, injury and physical, tactical and technical match performance were investigated in a professional soccer team across five consecutive league seasons (2008–2013, 190 league games) with specific focus on a championship-winning season (2010/11). For each player, match participation and time-loss injuries were recorded, the latter prospectively diagnosed by the team's physician. Defending and attacking tactical and technical performance indicators investigated included ball possession and possession in opponents' half, passes, forward passes, completed passes and forward passes, crosses and completed crosses, goal attempts and goal attempts on target, successful final third entries, free-kicks and 50/50 duels won/lost. Physical performance measures included total distance and distance covered at high-speeds (≥19.1 km/h). Results showed that during the 2010/11 season, squad utilisation was lowest potentially owing to the observed lower match injury occurrence and working days lost to injury thereby increasing player availability. In 2010/11, the team won both its highest number of points and conceded its lowest number of goals especially over the second half of this season. The team also won its highest number of games directly via a goal from a substitute and scored and conceded a goal first on the highest and lowest number of occasions, respectively. While multivariate analysis of variance (MANOVA) detected a significant difference in some attacking and defensive performance indicators across the five seasons, these were generally not distinguishing factors in 2010/11. Similarly, univariate ANOVAs showed a significant difference in running distances covered across seasons, but the trend was for less activity in 2010/11

    Are aerobic fitness and repeated sprint ability linked to fatigue in professional soccer match-play? A pilot study

    Get PDF
    This investigation examined the association between aerobic fitness and repeated sprint ability and match-related fatigue in 9 professional outfield soccer players. Aerobic fitness using maximal aerobic speed (MAS) was determined via a continuous progressive incremental running test conducted on a motorised treadmill. A repeated sprint ability test (6 successive 6 s sprints separated by 20 s passive recovery) was performed on a non-motorised treadmill to determine mean and best sprint times and a percentage decrement score (%PD). A total of 114 observations of physical performance derived using computerised time motion analyses were collected from 33 matches. Correlations between fitness test and match-play measures were examined for 1) accumulated fatigue: percentage difference between halves for total distance covered per minute, distance run at high-intensities (HIR, actions for 1s duration, >19.1 km/h) per minute, mean recovery time between high-intensity runs, and percentage difference between the distance covered in HIR in the first 5- and 15-minute periods versus the final 5- and 15-minute periods respectively in normal time; and for 2) transient fatigue: percentage difference between the distance covered in HIR in a peak 5-minute period and the subsequent 5-minute period and for the latter compared to the mean for all other 5-minute periods. No significant relationships were observed between MAS and fatigue scores (magnitude of associations: trivial to large). For mean and best sprint times and %PD, the only reported significant correlation (r=0.77, magnitude of association: very large, p<0.05) was between %PD and the % difference across halves for mean recovery time between high-intensity runs (magnitude of other associations: small to large). Criterion measures from tests of aerobic fitness and repeated sprint ability might not accurately depict a player’s capacity to resist fatigue during professional soccer competition

    Long-lived quantum memory with nuclear atomic spins

    Full text link
    We propose to store non-classical states of light into the macroscopic collective nuclear spin (101810^{18} atoms) of a 3^3He vapor, using metastability exchange collisions. These collisions, commonly used to transfer orientation from the metastable state 23S_12^{3}S\_1 to the ground state state of 3^3He, can also transfer quantum correlations. This gives a possible experimental scheme to map a squeezed vacuum field state onto a nuclear spin state with very long storage times (hours).Comment: 4 page

    Observation of metastable hcp solid helium

    Full text link
    We have produced and observed metastable solid helium-4 below its melting pressure between 1.1 K and 1.4 K. This is achieved by an intense pressure wave carefully focused inside a crystal of known orientation. An accurate density map of the focal zone is provided by an optical interferometric technique. Depending on the sample, minimum density achieved at focus corresponds to pressures between 2 and 4 bar below the static melting pressure. Beyond, the crystal undergoes an unexpected instability much earlier than the predicted spinodal limit. This opens a novel opportunity to study this quantum crystal in an expanded metastable state and its stability limits.Comment: deuxi\`eme versio

    Molecular Dynamics Study of Crystal Plasticity during Nanoindentation in Ni Nanowires

    Get PDF
    Molecular dynamics simulations were performed to gain fundamental insight into crystal plasticity, and its size effects in nanowires deformed by spherical indentation. This work focused on-oriented single-crystal, defect-free Ni nanowires of cylindrical shape with diameters of 12 and 30 nm. The indentation of thin films was also comparatively studied to characterize the influence of free surfaces in the emission and absorption of lattice dislocations in single-crystal Ni. All of the simulations were conducted at 300 K by using a virtual spherical indenter of 18 nm in diameter with a displacement rate of1 ms1. No significant effect of sample size was observed on the elastic response and mean contact pressure at yield point in both thin films and nanowires. In the plastic regime, a constant hardness of 21 GPa was found in thin films for penetration depths larger than 0.8 nm, irrespective of variations in film thickness. The major finding of this work is that the hardness of the nanowires decreases as the sample diameter decreases, causing important softening effects in the smaller nanowire during indentation. The interactions of prismatic loops and dislocations, which are emitted beneath the contact tip, with free boundaries are shown to be the main factor for the size dependence of hardness in single-crystal Ni nanowires during indentation

    Grain Growth Behavior at Absolute Zero during Nanocrystalline Metal Indentation

    Get PDF
    The authors show using atomistic simulations that stress-driven grain growth can be obtained in the athermal limit during nanocrystalline aluminum indentation. They find that the grain growth results from rotation of nanograins and propagation of shear bands. Together, these mechanisms are shown to lead to the unstable migration of grain boundaries via process of coupled motion. An analytical model is used to explain this behavior based on the atomic-level shear stress acting on the interfaces during the shear band propagation. This study sheds light on the atomic mechanism at play during the abnormal grain coarsening observed at low temperature in nanocrystalline metal
    • …
    corecore