research

Can managed grasslands enhance pollinators in intensively farmed areas?

Abstract

Wild flower strips is a common agri-environmental scheme used by farmers and land managers in order to improve biodiversity of pollinators. However, managed grasslands may also provide flower resources for flower visiting insects in agricultural landscapes. Botanically diverse grasslands on arable farms may support a range of wild pollinators, enhancing pollination services of crops. Intensively managed leys, on the other hand, typically contain only a few high-yielding, competitively strong species. One of the aims of the Multiplant project (2014-2018) was to test perennial seed mixtures targeted for bio-energy, feed protein and biodiversity, in order to develop multi-functional seed mixtures for grasslands. In the current study, we specifically investigated if yield (biomass production) and floral resources for pollinators could be simultaneously optimized by varying botanical composition of mixtures and cutting frequency. We tested four different perennial seed mixtures (3-, 5-, 11- and 13-species mixtures) at three sites varying in surrounding environment using three cutting strategies (no cutting, two cuts per year, four cuts per year). We measured flower production during the season, composition of flower-visitors (in functional groups), and biomass production of all plant species in the seed mixtures. The 11- and 13-species mixtures, which were designed to enhance pollinators, produced similar or higher yield than the 3- and 5- species mixtures under certain cutting regimes. The 3- and 5- species mixtures had a high accumulated flower abundance due to excessive flowering of lucerne under the two-cut strategy and white clover under the four-cut strategy. However, the 11- and 13 species mixtures presented a higher diversity of flowers during the flowering season. Interestingly, accumulated flower abundance was not significantly reduced under the two-cut strategy compared to no cut. Pollinator profiles (visits by different functional groups of insects) were plant-species specific, i.e. at all sites, plant species attracted similar types of insects. Legume species mainly attracted large bees (honey bees and bumblebees), while herbs attracted other insect groups, in particular syrphids and other flies. Our results suggest that multi-species grassland mixtures can be designed to support a higher diversity of pollinators without compromising herbage yield. In particular, adding forbs to the grass-legume mixtures and using a two-cut strategy rather than four cuts per year, may increase flower resources available for a larger range of wild pollinators

    Similar works