213 research outputs found

    Current research into brain barriers and the delivery of therapeutics for neurological diseases: a report on CNS barrier congress London, UK, 2017.

    Get PDF
    This is a report on the CNS barrier congress held in London, UK, March 22-23rd 2017 and sponsored by Kisaco Research Ltd. The two 1-day sessions were chaired by John Greenwood and Margareta Hammarlund-Udenaes, respectively, and each session ended with a discussion led by the chair. Speakers consisted of invited academic researchers studying the brain barriers in relation to neurological diseases and industry researchers studying new methods to deliver therapeutics to treat neurological diseases. We include here brief reports from the speakers

    Infected Cell Killing by HIV-1 Protease Promotes NF-κB Dependent HIV-1 Replication

    Get PDF
    Acute HIV-1 infection of CD4 T cells often results in apoptotic death of infected cells, yet it is unclear what evolutionary advantage this offers to HIV-1. Given the independent observations that acute T cell HIV-1 infection results in (1) NF-κB activation, (2) caspase 8 dependent apoptosis, and that (3) caspase 8 directly activates NF-κB, we questioned whether these three events might be interrelated. We first show that HIV-1 infected T cell apoptosis, NF-κB activation, and caspase 8 cleavage by HIV-1 protease are coincident. Next we show that HIV-1 protease not only cleaves procaspase 8, producing Casp8p41, but also independently stimulates NF-κB activity. Finally, we demonstrate that the HIV protease cleavage of caspase 8 is necessary for optimal NF-κB activation and that the HIV-1 protease specific cleavage fragment Casp8p41 is sufficient to stimulate HIV-1 replication through NF-κB dependent HIV-LTR activation both in vitro as well as in cells from HIV infected donors. Consequently, the molecular events which promote death of HIV-1 infected T cells function dually to promote HIV-1 replication, thereby favoring the propagation and survival of HIV-1

    HIV gp120 Induces, NF-κB Dependent, HIV Replication that Requires Procaspase 8

    Get PDF
    HIV envelope glycoprotein gp120 causes cellular activation resulting in anergy, apoptosis, proinflammatory cytokine production, and through an unknown mechanism, enhanced HIV replication.We describe that the signals which promote apoptosis are also responsible for the enhanced HIV replication. Specifically, we demonstrate that the caspase 8 cleavage fragment Caspase8p43, activates p50/p65 Nuclear Factor kappaB (NF-kappaB), in a manner which is inhibited by dominant negative IkappaBalpha. This caspase 8 dependent NF-kappaB activation occurs following stimulation with gp120, TNF, or CD3/CD28 crosslinking, but these treatments do not activate NF-kappaB in cells deficient in caspase 8. The Casp8p43 cleavage fragment also transactivates the HIV LTR through NF-kappaB, and the absence of caspase 8 following HIV infection greatly inhibits HIV replication.Gp120 induced caspase 8 dependent NF-kappaB activation is a novel pathway of HIV replication which increases understanding of the biology of T-cell death, as well as having implications for understanding treatment and prevention of HIV infection

    Leishmania infantum Amastigotes Enhance HIV-1 Production in Cocultures of Human Dendritic Cells and CD4+ T Cells by Inducing Secretion of IL-6 and TNF-α

    Get PDF
    Visceral leishmaniasis (VL) is a potentially deadly parasitic disease afflicting millions worldwide. Although itself an important infectious illness, VL has also emerged as an opportunistic disease among patients infected with HIV-1. This is partly due to the increasing overlap between urban regions of high HIV-1 transmission and areas where Leishmania is endemic. Furthermore, VL increases the development and clinical progression of AIDS-related diseases. Conversely, HIV-1-infected individuals are at greater risk of developing VL or suffering relapse. Finally, HIV-1 and Leishmania can both productively infect cells of the macrophage-dendritic cell lineage, resulting in a cumulative deficiency of the immune response. We therefore studied the effect of Leishmania infantum on HIV-1 production when dendritic cells (DCs) are cocultured with autologous CD4+ T cells. We show that amastigotes promote virus replication in both DCs and lymphocytes, due to a parasite-mediated production of soluble factors by DCs. Micro-beads array analyses indicate that Leishmania infantum amastigotes infection induces a higher secretion of several cytokines in these cells, and use of specific neutralizing antibodies revealed that the Leishmania-induced increase in HIV-1 replication is due to IL-6 and TNF-α. These findings suggest that Leishmania's presence within DC/T-cell conjugates leads to an enhanced HIV-1 production

    Pigment epithelium-derived factor protects retinal ganglion cells

    Get PDF
    BACKGROUND: Retinal ganglion cells (RGCs) are responsible for the transmission of visual signals to the brain. Progressive death of RGCs occurs in glaucoma and several other retinal diseases, which can lead to visual impairment and blindness. Pigment epithelium-derived factor (PEDF) is a potent antiangiogenic, neurotrophic and neuroprotective protein that can protect neurons from a variety of pathologic insults. We tested the effects of PEDF on the survival of cultured adult rat RGCs in the presence of glaucoma-like insults, including cytotoxicity induced by glutamate or withdrawal of trophic factors. RESULTS: Cultured adult rat RGCs exposed to glutamate for 3 days showed signs of cytotoxicity and death. The toxic effect of glutamate was concentration-dependent (EC(50 )= 31 μM). In the presence of 100 μM glutamate, RGC number decreased to 55 ± 4% of control (mean ± SEM, n = 76; P < 0.001). The glutamate effect was completely eliminated by MK801, an NMDA receptor antagonist. Trophic factor withdrawal also caused a similar loss of RGCs (54 ± 4%, n = 60, P < 0.001). PEDF protected against both insults with EC(50 )values of 13.6 ng/mL (glutamate) and 3.4 ng/mL (trophic factor withdrawal), respectively. At 100 ng/mL, PEDF completely protected the cells from both insults. Inhibitors of the nuclear factor κB (NFκB) and extracellular signal-regulated kinases 1/2 (ERK1/2) significantly reduced the protective effects of PEDF. CONCLUSION: We demonstrated that PEDF potently and efficaciously protected adult rat RGCs from glutamate- and trophic factor withdrawal-mediated cytotoxicity, via the activation of the NFκB and ERK1/2 pathways. The neuroprotective effect of PEDF represents a novel approach for potential treatment of retinopathies, such as glaucoma

    Exposure to Apoptotic Activated CD4+ T Cells Induces Maturation and APOBEC3G- Mediated Inhibition of HIV-1 Infection in Dendritic Cells

    Get PDF
    Dendritic cells (DCs) are activated by signaling via pathogen-specific receptors or exposure to inflammatory mediators. Here we show that co-culturing DCs with apoptotic HIV-infected activated CD4+ T cells (ApoInf) or apoptotic uninfected activated CD4+ T cells (ApoAct) induced expression of co-stimulatory molecules and cytokine release. In addition, we measured a reduced HIV infection rate in DCs after co-culture with ApoAct. A prerequisite for reduced HIV infection in DCs was activation of CD4+ T cells before apoptosis induction. DCs exposed to ApoAct or ApoInf secreted MIP-1α, MIP-1β, MCP-1, and TNF-α; this effect was retained in the presence of exogenous HIV. The ApoAct-mediated induction of co-stimulatory CD86 molecules and reduction of HIV infection in DCs were partially abrogated after blocking TNF-α using monoclonal antibodies. APOBEC3G expression in DCs was increased in co-cultures of DCs and ApoAct but not by apoptotic resting CD4+ T cells (ApoRest). Silencing of APOBEC3G in DC abrogated the HIV inhibitory effect mediated by ApoAct. Sequence analyses of an env region revealed significant induction of G-to-A hypermutations in the context of GG or GA dinucleotides in DNA isolated from DCs exposed to HIV and ApoAct. Thus, ApoAct-mediated DC maturation resulted in induction of APOBEC3G that was important for inhibition of HIV-infection in DCs. These findings underscore the complexity of differential DC responses evoked upon interaction with resting as compared with activated dying cells during HIV infection

    Codon Preference Optimization Increases Heterologous PEDF Expression

    Get PDF
    Pigment epithelium-derived factor (PEDF) is widely known for its neurotrophic and antiangiogenic functions. Efficacy studies of PEDF in animal models are limited because of poor heterologous protein yields. Here, we redesigned the human PEDF gene to preferentially match codon frequencies of E coli without altering the amino acid sequence. Following de novo synthesis, codon optimized PEDF (coPEDF) and the wtPEDF genes were cloned into pET32a containing a 5′ thioredoxin sequence (Trx) and the recombinant Trx-coPEDF or Trx-wtPEDF fusion constructs expressed in native and two tRNA augmented E coli hosts - BL21-CodonPlus(DE3)-RIL and BL21-CodonPlus(DE3)-RP, carrying extra copies of tRNAarg,ile,leu and tRNAarg,pro genes , respectively. Trx-PEDF fusion proteins were isolated using Ni-NTA metal affinity chromatography and PEDF purified after cleavage with factor Xα. Protein purity and identity were confirmed by western blot, MALDI-TOF, and UV/CD spectral analyses. Expression of the synthetic gene was ∼3.4 fold greater (212.7 mg/g; 62.1 mg/g wet cells) and purified yields ∼4 fold greater (41.1 mg/g; 11.3 mg/g wet cell) than wtPEDF in the native host. A small increase in expression of both genes was observed in hosts supplemented with rare tRNA genes compared to the native host but expression of coPEDF was ∼3 fold greater than wtPEDF in both native and codon-bias-adjusted E coli strains. ΔGs at −3 to +50 of the Trx site of both fusion genes were −3.9 kcal/mol. Functionally, coPEDF was equally as effective as wtPEDF in reducing oxidative stress, promoting neurite outgrowth, and blocking endothelial tube formation. These findings suggest that while rare tRNA augmentation and mRNA folding energies can significantly contribute to increased protein expression, preferred codon usage, in this case, is advantageous to translational efficiency of biologically active PEDF in E coli. This strategy will undoubtedly fast forward studies to validate therapeutic utility of PEDF in vivo

    Antiviral mode of action of bovine dialyzable leukocyte extract against human immunodeficiency virus type 1 infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bovine dialyzable leukocyte extract (bDLE) is derived from immune leukocytes obtained from bovine spleen. DLE has demonstrated to reduce transcription of Human Immunodeficiency Virus Type 1 (HIV-1) and inactivate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. Therefore, we decided to clarify the mode of antiviral action of bDLE on the inhibition of HIV-1 infection through a panel of antiviral assays.</p> <p>Results</p> <p>The cytotoxicity, HIV-1 inhibition activity, residual infectivity of bDLE in HIV-1, time of addition experiments, fusion inhibition of bDLE for fusogenic cells and the duration of cell protection even after the removal of bDLE were all assessed in order to discover more about the mode of the antiviral action.</p> <p>HIV-1 infectivity was inhibited by bDLE at doses that were not cytotoxic for HeLa-CD4-LTR-β-gal cells. Pretreatment of HIV-1 with bDLE did not decrease the infectivity of these viral particles. Cell-based fusion assays helped to determine if bDLE could inhibit fusion of Env cells against CD4 cells by membrane fusion and this cell-based fusion was inhibited only when CD4 cells were treated with bDLE. Infection was inhibited in 80% compared with the positive (without EDL) at all viral life cycle stages in the time of addition experiments when bDLE was added at different time points. Finally, a cell-protection assay against HIV-1 infection by bDLE was performed after treating host cells with bDLE for 30 minutes and then removing them from treatment. From 0 to 7 hours after the bDLE was completely removed from the extracellular compartment, HIV-1 was then added to the host cells. The bDLE was found to protect the cells from HIV-1 infection, an effect that was retained for several hours.</p> <p>Conclusions</p> <p>bDLE acted as an antiviral compound and prevented host cell infection by HIV-1 at all viral life cycle stages. These cell protection effects lingered for hours after the bDLE was removed. Interestingly, bDLE inhibited fusion of fusogenic cells by acting only on CD4 cells. bDLE had no virucidal effect, but could retain its antiviral effect on target cells after it was removed from the extracellular compartment, protecting the cells from infection for hours.</p> <p>bDLE, which has no reported side effects or toxicity in clinical trials, should therefore be further studied to determine its potential use as a therapeutic agent in HIV-1 infection therapy, in combination with known antiretrovirals.</p
    • …
    corecore