44 research outputs found

    Repeat-pass synthetic aperture sonar micro-navigation using redundant phase center arrays

    Get PDF
    In this paper, a new algorithm is introduced for high-precision underwater navigation using the coherent echo signals collected during repeat-pass synthetic aperture sonar (SAS) surveys. The algorithm is a generalization of redundant phase center (RPC) micronavigation, expanded to RPCs formed between overlapping pings in repeated passes. For each set of overlapping ping pairs (two intrapass and three interpass), five different RPC arrays can be formed to provide estimates of the vehicle's surge, sway, and yaw. These estimates are used to find a weighted least squares solution for the trajectories of the repeated passes. The algorithm can estimate the relative trajectories to subwavelength precision (on order of millimeters to hundreds of micrometers at typical SAS operating frequencies of hundreds of kilohertz) in a common coordinate frame. This will lead to improved focusing and coregistration for repeat-pass SAS interferometry and is an important step toward repeat-pass bathymetric mapping. The repeat-pass RPC micronavigation algorithm is demonstrated using data collected by the 300-kHz SAS of the NATO Center for Maritime Research and Experimentation (CMRE) Minehunting Unmanned underwater vehicle for Shallow water Covert Littoral Expeditions (MUSCLE)

    Editorial

    Get PDF

    Repeat-pass synthetic aperture sonar micro-navigation using redundant phase center arrays

    Get PDF

    Face cloning and video spatialization : tools for virtual teleconference

    Get PDF
    In this paper, we propose powerful virtual image processing tools (face cloning and video spatialization) which can be useful to design new teleconferencing systems offering a better comfort for users even if very low bit rate links are used . These tools allow a new teleconferencing concept, relying on the metaphor of a virtual meeting room where participants can choose their position and point of view. In particular, we propose video cloning modules to represent all participants vith 3D synthetic models of their face, constructed from range data with simplex meshes . These models are meant to be visualized under a point of view different from the camera which analyses the facial motion of the speakers . Besides, the realism of the virtual meeting room is improved by video spatialization techniques, which aims at synthesizing new points of view from a limited set of uncalibrated views of an existing room .Dans cet article, nous proposons des algorithmes de traitement d'image vidéo (tels que le clonage de visages et la spatialisation vidéo) qui peuvent être utilisés pour définir de nouveaux systèmes de vidéoconférence offrant plus de « confort d'utilisation » que les systèmes actuels, malgré des liaisons très bas-débit. Ce nouveau concept repose sur la métaphore d'une salle de réunion virtuelle où les utilisateurs pourront choisir leur place. En particulier, nous proposons des modules de clonage vidéo pour représenter les participants par l'intermédiaire de modèles synthétiques 3D de leur visage, obtenus par création de maillages simplexes sur des données Cyberware. Ces modèles sont visualisables sous des points de vue différents de celui de la caméra qui analyse les mouvements des participants. Par ailleurs, le réalisme de l'espace de réunion virtuelle est renforcé par des techniques de spatialisation vidéo qui a pour but de créer des points de vue inédits à partir d'images statiques non-calibrées d'une salle de réunion existante

    Yeasts and wine off-flavours: a technological perspective

    Get PDF
    Review article. Part of the special issue "Wine microbiology and safety: from the vineyard to the bottle (Microsafety Wine)", 19-20 Nov. 2009, ItalyIn wine production, yeasts have both beneficial and detrimental activities. Saccharomyces cerevisiae is the yeast mainly responsible for turning grape juice into wine but this species and several others may also show undesirable effects in wines. Among such effects, technologists are particularly concerned with the production of offflavours that may occur during all stages of winemaking. Typical spoiling activities include the production of ethyl acetate by apiculate yeasts before fermentation, hydrogen sulphide by S. cerevisiae during fermentation phases, acetaldehyde by film-forming yeasts during bulk storage, and volatile phenols by Dekkera bruxellensis during storage or after bottling. The occurrence of these hazards depends on the technological operations designed to obtain a given type of wine and most can be avoided by current preventive or curative measures. On the contrary, good manufacturing practices must be strengthened to deal with the problem of volatile phenol production in red wines. Appropriate monitoring of D. bruxellensis populations and quantification of 4-ethylphenol is advised during storage, particularly when oak barrels are used, and absence of viable cells must be guaranteed in bottled wines. This work, which is based on our experience at winery level, aims to provide information on appropriate technological strategies to deal with the problem of off-flavours produced by yeasts

    Impact of volatile phenols and their precursors on wine quality and control measures of Brettanomyces/Dekkera yeasts

    Get PDF
    Volatile phenols are aromatic compounds and one of the key molecules responsible for olfactory defects in wine. The yeast genus Brettanomyces is the only major microorganism that has the ability to covert hydroxycinnamic acids into important levels of these compounds, especially 4-ethylphenol and 4-ethylguaiacol, in red wine. When 4-ethylphenols reach concentrations greater than the sensory threshold, all wine’s organoleptic characteristics might be influenced or damaged. The aim of this literature review is to provide a better understanding of the physicochemical, biochemical, and metabolic factors that are related to the levels of p-coumaric acid and volatile phenols in wine. Then, this work summarizes the different methods used for controlling the presence of Brettanomyces in wine and the production of ethylphenols

    UNC45A deficiency causes microvillus inclusion disease–like phenotype by impairing myosin VB–dependent apical trafficking

    Get PDF
    International audienceVariants in the UNC45A cochaperone have been recently associated with a syndrome combining diarrhea, cholestasis, deafness, and bone fragility. Yet the mechanism underlying intestinal failure in UNC45A deficiency remains unclear. Here, biallelic variants in UNC45A were identified by next-generation sequencing in 6 patients with congenital diarrhea. Corroborating in silico prediction, variants either abolished UNC45A expression or altered protein conformation. Myosin VB was identified by mass spectrometry as client of the UNC45A chaperone and was found misfolded in UNC45A(KO) Caco-2 cells. In keeping with impaired myosin VB function, UNC45A(KO) Caco-2 cells showed abnormal epithelial morphogenesis that was restored by full-length UNC45A, but not by mutant alleles. Patients and UNC45A(KO) 3D organoids displayed altered luminal development and microvillus inclusions, while 2D cultures revealed Rab11 and apical transporter mislocalization as well as sparse and disorganized microvilli. All those features resembled the subcellular abnormalities observed in duodenal biopsies from patients with microvillus inclusion disease. Finally, microvillus inclusions and shortened microvilli were evidenced in enterocytes from unc45a-deficient zebrafish. Taken together, our results provide evidence that UNC45A plays an essential role in epithelial morphogenesis through its cochaperone function of myosin VB and that UNC45A loss causes a variant of microvillus inclusion disease
    corecore