14 research outputs found

    The Medical Genome Reference Bank contains whole genome and phenotype data of 2570 healthy elderly

    Get PDF
    Population health research is increasingly focused on the genetic determinants of healthy ageing, but there is no public resource of whole genome sequences and phenotype data from healthy elderly individuals. Here we describe the first release of the Medical Genome Reference Bank (MGRB), comprising whole genome sequence and phenotype of 2570 elderly Australians depleted for cancer, cardiovascular disease, and dementia. We analyse the MGRB for single-nucleotide, indel and structural variation in the nuclear and mitochondrial genomes. MGRB individuals have fewer disease-associated common and rare germline variants, relative to both cancer cases and the gnomAD and UK Biobank cohorts, consistent with risk depletion. Age-related somatic changes are correlated with grip strength in men, suggesting blood-derived whole genomes may also provide a biologic measure of age-related functional deterioration. The MGRB provides a broadly applicable reference cohort for clinical genetics and genomic association studies, and for understanding the genetics of healthy ageing

    Detection of clinically relevant copy-number variants by exome sequencing in a large cohort of genetic disorders

    Get PDF
    Contains fulltext : 174063.pdf (publisher's version ) (Open Access)PURPOSE: Copy-number variation is a common source of genomic variation and an important genetic cause of disease. Microarray-based analysis of copy-number variants (CNVs) has become a first-tier diagnostic test for patients with neurodevelopmental disorders, with a diagnostic yield of 10-20%. However, for most other genetic disorders, the role of CNVs is less clear and most diagnostic genetic studies are generally limited to the study of single-nucleotide variants (SNVs) and other small variants. With the introduction of exome and genome sequencing, it is now possible to detect both SNVs and CNVs using an exome- or genome-wide approach with a single test. METHODS: We performed exome-based read-depth CNV screening on data from 2,603 patients affected by a range of genetic disorders for which exome sequencing was performed in a diagnostic setting. RESULTS: In total, 123 clinically relevant CNVs ranging in size from 727 bp to 15.3 Mb were detected, which resulted in 51 conclusive diagnoses and an overall increase in diagnostic yield of ~2% (ranging from 0 to -5.8% per disorder). CONCLUSIONS: This study shows that CNVs play an important role in a broad range of genetic disorders and that detection via exome-based CNV profiling results in an increase in the diagnostic yield without additional testing, bringing us closer to single-test genomics.Genet Med advance online publication 27 October 2016
    corecore