59 research outputs found
Female reproductive tract infections: understandings and care seeking behaviour among women of reproductive age in Lagos, Nigeria
<p>Abstract</p> <p>Background</p> <p>Reproductive tract infections (RTI's) are endemic in developing countries and entail a heavy toll on women. If untreated, RTI's can lead to adverse health outcomes such as infertility, ectopic pregnancy and increased vulnerability to transmission of the human immunodeficiency virus. It is also associated with adverse pregnancy outcomes. While RTI's and its sequelae abound in Nigeria, there is paucity of publications on the subject in the country. This study assessed the understandings and care seeking behavior with regards to RTI's among women of reproductive age in Lagos, Nigeria with the aim of improving awareness on the subject.</p> <p>Methods</p> <p>A descriptive cross sectional survey of women attending the gynaecological outpatient and family planning clinics of the Lagos State University Teaching Hospital was carried out between 1<sup>st </sup>June 2008 and 31<sup>st </sup>August 2008 using a pre-tested questionnaire. Data was analysed using the Epi-Info 3.5 statistical software of the Centre for Disease Control and Prevention, Atlanta U.S.A.</p> <p>Results</p> <p>Most of the respondents (77.2%) had heard of RTI's. Toilet was the most perceived mode of contracting RTI's (44.6%), followed by sexual intercourse and poor hygiene. Vaginal discharge was the commonest symptom of RTI's named while inability to get pregnant was the commonest named complication. Majority of the respondent's demonstrated poor overall knowledge of symptoms and complications of RTI"s. 37.4% of the respondents had experienced symptoms of RTI's in the preceding six months. Vaginal discharge was the commonest symptom reported (21.8%) and the majority of those who reported symptoms sought medical treatment. Government health centres were the most visited health facilities for treatment.</p> <p>Conclusion</p> <p>Even though most of the respondents have heard of RTI's and sought treatment when symptomatic, they demonstrated poor overall understanding of the subject. There is need to educate women on preventive strategies, as RTI's are often assymptomatic.</p
Nanoceria Inhibit the Development and Promote the Regression of Pathologic Retinal Neovascularization in the Vldlr Knockout Mouse
Many neurodegenerative diseases are known to occur and progress because of oxidative stress, the presence of reactive oxygen species (ROS) in excess of the cellular defensive capabilities. Age related macular degeneration (AMD), diabetic retinopathy (DR) and inherited retinal degeneration share oxidative stress as a common node upstream of the blinding effects of these diseases. Knockout of the Vldlr gene results in a mouse that develops intraretinal and subretinal neovascular lesions within the first month of age and is an excellent model for a form of AMD called retinal angiomatous proliferation (RAP). Cerium oxide nanoparticles (nanoceria) catalytically scavenge ROS by mimicking the activities of superoxide dismutase and catalase. A single intravitreal injection of nanoceria into the Vldlr-/- eye was shown to inhibit: the rise in ROS in the Vldlr-/- retina, increases in vascular endothelial growth factor (VEGF) in the photoreceptor layer, and the formation of intraretinal and subretinal neovascular lesions. Of more therapeutic interest, injection of nanoceria into older mice (postnatal day 28) resulted in the regression of existing vascular lesions indicating that the pathologic neovessels require the continual production of excessive ROS. Our data demonstrate the unique ability of nanoceria to prevent downstream effects of oxidative stress in vivo and support their therapeutic potential for treatment of neurodegenerative diseases such as AMD and DR
Eosinophils in glioblastoma biology
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The development of this malignant glial lesion involves a multi-faceted process that results in a loss of genetic or epigenetic gene control, un-regulated cell growth, and immune tolerance. Of interest, atopic diseases are characterized by a lack of immune tolerance and are inversely associated with glioma risk. One cell type that is an established effector cell in the pathobiology of atopic disease is the eosinophil. In response to various stimuli, the eosinophil is able to produce cytotoxic granules, neuromediators, and pro-inflammatory cytokines as well as pro-fibrotic and angiogenic factors involved in pathogen clearance and tissue remodeling and repair. These various biological properties reveal that the eosinophil is a key immunoregulatory cell capable of influencing the activity of both innate and adaptive immune responses. Of central importance to this report is the observation that eosinophil migration to the brain occurs in response to traumatic brain injury and following certain immunotherapeutic treatments for GBM. Although eosinophils have been identified in various central nervous system pathologies, and are known to operate in wound/repair and tumorstatic models, the potential roles of eosinophils in GBM development and the tumor immunological response are only beginning to be recognized and are therefore the subject of the present review
The LUX-ZEPLIN (LZ) Experiment
We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoils. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient neutron capture and tagging. LZ is located in the Davis Cavern at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. We describe the major subsystems of the experiment and its key design features and requirements
The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs
LUX-ZEPLIN (LZ) is a second-generation direct dark matter experiment with spin-independent WIMP-nucleon scattering sensitivity above 1.4Ă10â48cm2 for a WIMP mass of 40GeV/c2 and a 1000days exposure. LZ achieves this sensitivity through a combination of a large 5.6t fiducial volume, active inner and outer veto systems, and radio-pure construction using materials with inherently low radioactivity content. The LZ collaboration performed an extensive radioassay campaign over a period of six years to inform material selection for construction and provide an input to the experimental background model against which any possible signal excess may be evaluated. The campaign and its results are described in this paper. We present assays of dust and radon daughters depositing on the surface of components as well as cleanliness controls necessary to maintain background expectations through detector construction and assembly. Finally, examples from the campaign to highlight fixed contaminant radioassays for the LZ photomultiplier tubes, quality control and quality assurance procedures through fabrication, radon emanation measurements of major sub-systems, and bespoke detector systems to assay scintillator are presented
Genomic mutations and changes in protein secondary structure and solvent accessibility of SARS-CoV-2 (COVID-19 virus)
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly pathogenic virus that has caused the global COVID-19 pandemic. Tracing the evolution and transmission of the virus is crucial to respond to and control the pandemic through appropriate intervention strategies. This paper reports and analyses genomic mutations in the coding regions of SARS-CoV-2 and their probable protein secondary structure and solvent accessibility changes, which are predicted using deep learning models. Prediction results suggest that mutation D614G in the virus spike protein, which has attracted much attention from researchers, is unlikely to make changes in protein secondary structure and relative solvent accessibility. Based on 6324 viral genome sequences, we create a spreadsheet dataset of point mutations that can facilitate the investigation of SARS-CoV-2 in many perspectives, especially in tracing the evolution and worldwide spread of the virus. Our analysis results also show that coding genes E, M, ORF6, ORF7a, ORF7b and ORF10 are most stable, potentially suitable to be targeted for vaccine and drug development
- âŠ