960 research outputs found

    Somatosensory Evoked Potentials suppression due to remifentanil during spinal operations; a prospective clinical study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Somatosensory evoked potentials (SSEP) are being used for the investigation and monitoring of the integrity of neural pathways during surgical procedures. Intraoperative neurophysiologic monitoring is affected by the type of anesthetic agents. Remifentanil is supposed to produce minimal or no changes in SSEP amplitude and latency. This study aims to investigate whether high doses of remifentanil influence the SSEP during spinal surgery under total intravenous anesthesia.</p> <p>Methods</p> <p>Ten patients underwent spinal surgery. Anesthesia was induced with propofol (2 mg/Kg), fentanyl (2 mcg/Kg) and a single dose of cis-atracurium (0.15 mg/Kg), followed by infusion of 0.8 mcg/kg/min of remifentanil and propofol (30-50 mcg/kg/min). The depth of anesthesia was monitored by Bispectral Index (BIS) and an adequate level (40-50) of anesthesia was maintained. Somatosensory evoked potentials (SSEPs) were recorded intraoperatively from the tibial nerve (P37) 15 min before initiation of remifentanil infusion. Data were analysed over that period.</p> <p>Results</p> <p>Remifentanil induced prolongation of the tibial SSEP latency which however was not significant (p > 0.05). The suppression of the amplitude was significant (p < 0.001), varying from 20-80% with this decrease being time related.</p> <p>Conclusion</p> <p>Remifentanil in high doses induces significant changes in SSEP components that should be taken under consideration during intraoperative neuromonitoring.</p

    Metabolic Changes in the Visual Cortex Are Linked to Retinal Nerve Fiber Layer Thinning in Multiple Sclerosis

    Get PDF
    OBJECTIVE: To investigate the damage to the retinal nerve fiber layer as part of the anterior visual pathway as well as an impairment of the neuronal and axonal integrity in the visual cortex as part of the posterior visual pathway with complementary neuroimaging techniques, and to correlate our results to patients' clinical symptoms concerning the visual pathway. DESIGN, SUBJECTS AND METHODS: Survey of 86 patients with relapsing-remitting multiple sclerosis that were subjected to retinal nerve fiber layer thickness (RNFLT) measurement by optical coherence tomography, to a routine MRI scan including the calculation of the brain parenchymal fraction (BPF), and to magnetic resonance spectroscopy at 3 tesla, quantifying N-acetyl aspartate (NAA) concentrations in the visual cortex and normal-appearing white matter. RESULTS: RNFLT correlated significantly with BPF and visual cortex NAA, but not with normal-appearing white matter NAA. This was connected with the patients' history of a previous optic neuritis. In a combined model, both BPF and visual cortex NAA were independently associated with RNFLT. CONCLUSIONS: Our data suggest the existence of functional pathway-specific damage patterns exceeding global neurodegeneration. They suggest a strong interrelationship between damage to the anterior and the posterior visual pathway

    Differential Modulation of TNF-α–Induced Apoptosis by Neisseria meningitidis

    Get PDF
    Infections by Neisseria meningitidis show duality between frequent asymptomatic carriage and occasional life-threatening disease. Bacterial and host factors involved in this balance are not fully understood. Cytopathic effects and cell damage may prelude to pathogenesis of isolates belonging to hyper-invasive lineages. We aimed to analyze cell–bacteria interactions using both pathogenic and carriage meningococcal isolates. Several pathogenic isolates of the ST-11 clonal complex and carriage isolates were used to infect human epithelial cells. Cytopathic effect was determined and apoptosis was scored using several methods (FITC-Annexin V staining followed by FACS analysis, caspase assays and DNA fragmentation). Only pathogenic isolates were able to induce apoptosis in human epithelial cells, mainly by lipooligosaccharide (endotoxin). Bioactive TNF-α is only detected when cells were infected by pathogenic isolates. At the opposite, carriage isolates seem to provoke shedding of the TNF-α receptor I (TNF-RI) from the surface that protect cells from apoptosis by chelating TNF-α. Ability to induce apoptosis and inflammation may represent major traits in the pathogenesis of N. meningitidis. However, our data strongly suggest that carriage isolates of meningococci reduce inflammatory response and apoptosis induction, resulting in the protection of their ecological niche at the human nasopharynx

    Present day greenhouse gases could cause more frequent and longer Dust Bowl heatwaves

    Get PDF
    Substantial warming occurred across North America, Europe and the Arctic over the early twentieth century1, including an increase in global drought2, that was partially forced by rising greenhouse gases (GHGs)3. The period included the 1930s Dust Bowl drought4,5,6,7 across North America’s Great Plains that caused widespread crop failures4,8, large dust storms9 and considerable out-migration10. This coincided with the central United States experiencing its hottest summers of the twentieth century11,12 in 1934 and 1936, with over 40 heatwave days and maximum temperatures surpassing 44 °C at some locations13,14. Here we use a large-ensemble regional modelling framework to show that GHG increases caused slightly enhanced heatwave activity over the eastern United States during 1934 and 1936. Instead of asking how a present-day heatwave would behave in a world without climate warming, we ask how these 1930s heatwaves would behave with present-day GHGs. Heatwave activity in similarly rare events would be much larger under today’s atmospheric GHG forcing and the return period of a 1-in-100-year heatwave summer (as observed in 1936) would be reduced to about 1-in-40 years. A key driver of the increasing heatwave activity and intensity is reduced evaporative cooling and increased sensible heating during dry springs and summers
    • …
    corecore