139 research outputs found

    Recommendations for the detection and diagnosis of Niemann-Pick disease type C: An update.

    Get PDF
    PURPOSE OF REVIEW: Niemann-Pick disease type C (NP-C) is a neurovisceral disorder that may be more prevalent than earlier estimates. Diagnosis of NP-C is often delayed; a key aim for clinical practice is to reduce this delay. Recently, substantial progress has been made in the field of NP-C screening and diagnosis, justifying an update to the existing recommendations for clinical practice. RECENT FINDINGS: New biomarker profiling and genetic analysis technologies are included as first-line diagnostic tests for NP-C. Most diagnoses can now be confirmed by combination of biomarker and genetic analyses. Filipin staining may facilitate diagnosis in uncertain cases. Recommendations are provided for psychiatrists, neuro-ophthalmologists, and radiologists, and on screening within specific at-risk patient cohorts. The NP-C diagnostic algorithm has been updated and simplified. SUMMARY: This publication provides expert recommendations for clinicians who may see patients presenting with the signs and symptoms of NP-C, including general practitioners, pediatricians, neurologists, and psychiatrists

    Comparative studies of glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1: evidence for a eutherian mammalian origin for the GPIHBP1 gene from an LY6-like gene

    Get PDF
    Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) functions as a platform and transport agent for lipoprotein lipase (LPL) which functions in the hydrolysis of chylomicrons, principally in heart, skeletal muscle and adipose tissue capillary endothelial cells. Previous reports of genetic deficiency for this protein have described severe chylomicronemia. Comparative GPIHBP1 amino acid sequences and structures and GPIHBP1 gene locations were examined using data from several mammalian genome projects. Mammalian GPIHBP1 genes usually contain four coding exons on the positive strand. Mammalian GPIHBP1 sequences shared 41–96% identities as compared with 9–32% sequence identities with other LY6-domain-containing human proteins (LY6-like). The human N-glycosylation site was predominantly conserved among other mammalian GPIHBP1 proteins except cow, dog and pig. Sequence alignments, key amino acid residues and conserved predicted secondary structures were also examined, including the N-terminal signal peptide, the acidic amino acid sequence region which binds LPL, the glycosylphosphatidylinositol linkage group, the Ly6 domain and the C-terminal α-helix. Comparative and phylogenetic studies of mammalian GPIHBP1 suggested that it originated in eutherian mammals from a gene duplication event of an ancestral LY6-like gene and subsequent integration of exon 2, which may have been derived from BCL11A (B-cell CLL/lymphoma 11A gene) encoding an extended acidic amino acid sequence

    Restriction of HIV-1 Replication in Monocytes Is Abolished by Vpx of SIVsmmPBj

    Get PDF
    Background: Human primary monocytes are refractory to infection with the human immunodeficiency virus 1 (HIV-1) or transduction with HIV-1-derived vectors. In contrast, efficient single round transduction of monocytes is mediated by vectors derived from simian immunodeficiency virus of sooty mangabeys (SIVsmmPBj), depending on the presence of the viral accessory protein Vpx. Methods and Findings: Here we analyzed whether Vpx of SIVsmmPBj is sufficient for transduction of primary monocytes by HIV-1-derived vectors. To enable incorporation of PBj Vpx into HIV-1 vector particles, a HA-Vpr/Vpx fusion protein was generated. Supplementation of HIV-1 vector particles with this fusion protein was not sufficient to facilitate transduction of human monocytes. However, monocyte transduction with HIV-1-derived vectors was significantly enhanced after delivery of Vpx proteins by virus-like particles (VLPs) derived from SIVsmmPBj. Moreover, pre-incubation with Vpx-containing VLPs restored replication capacity of infectious HIV-1 in human monocytes. In monocytes of non-human primates, single-round transduction with HIV-1 vectors was enabled. Conclusion: Vpx enhances transduction of primary human and even non-human monocytes with HIV-1-derived vectors, only if delivered in the background of SIVsmmPBj-derived virus-like particles. Thus, for accurate Vpx function the presence of SIVsmmPBj capsid proteins might be required. Vpx is essential to overcome a block of early infection steps in primary monocytes

    Text Mining Improves Prediction of Protein Functional Sites

    Get PDF
    We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions

    Molecular Signatures of Prostate Stem Cells Reveal Novel Signaling Pathways and Provide Insights into Prostate Cancer

    Get PDF
    BACKGROUND:The global gene expression profiles of adult and fetal murine prostate stem cells were determined to define common and unique regulators whose misexpression might play a role in the development of prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS:A distinctive core of transcriptional regulators common to both fetal and adult primitive prostate cells was identified as well as molecules that are exclusive to each population. Elements common to fetal and adult prostate stem cells include expression profiles of Wnt, Shh and other pathways identified in stem cells of other organs, signatures of the aryl-hydrocarbon receptor, and up-regulation of components of the aldehyde dehydrogenase/retinoic acid receptor axis. There is also a significant lipid metabolism signature, marked by overexpression of lipid metabolizing enzymes and the presence of the binding motif for Srebp1. The fetal stem cell population, characterized by more rapid proliferation and self-renewal, expresses regulators of the cell cycle, such as E2f, Nfy, Tead2 and Ap2, at elevated levels, while adult stem cells show a signature in which TGF-beta has a prominent role. Finally, comparison of the signatures of primitive prostate cells with previously described profiles of human prostate tumors identified stem cell molecules and pathways with deregulated expression in prostate tumors including chromatin modifiers and the oncogene, Erg. CONCLUSIONS/SIGNIFICANCE:Our data indicate that adult prostate stem or progenitor cells may acquire characteristics of self-renewing primitive fetal prostate cells during oncogenesis and suggest that aberrant activation of components of prostate stem cell pathways may contribute to the development of prostate tumors

    Understanding How Microplastics Affect Marine Biota on the Cellular Level Is Important for Assessing Ecosystem Function: A Review

    Get PDF
    Plastic has become indispensable for human life. When plastic debris is discarded into waterways, these items can interact with organisms. Of particular concern are microscopic plastic particles (microplastics) which are subject to ingestion by several taxa. This review summarizes the results of cutting-edge research about the interactions between a range of aquatic species and microplastics, including effects on biota physiology and secondary ingestion. Uptake pathways via digestive or ventilatory systems are discussed, including (1) the physical penetration of microplastic particles into cellular structures, (2) leaching of chemical additives or adsorbed persistent organic pollutants (POPs), and (3) consequences of bacterial or viral microbiota contamination associated with microplastic ingestion. Following uptake, a number of individual-level effects have been observed, including reduction of feeding activities, reduced growth and reproduction through cellular modifications, and oxidative stress. Microplastic-associated effects on marine biota have become increasingly investigated with growing concerns regarding human health through trophic transfer. We argue that research on the cellular interactions with microplastics provide an understanding of their impact to the organisms’ fitness and, therefore, its ability to sustain their functional role in the ecosystem. The review summarizes information from 236 scientific publications. Of those, only 4.6% extrapolate their research of microplastic intake on individual species to the impact on ecosystem functioning. We emphasize the need for risk evaluation from organismal effects to an ecosystem level to effectively evaluate the effect of microplastic pollution on marine environments. Further studies are encouraged to investigate sublethal effects in the context of environmentally relevant microplastic pollution conditions

    Selective inhibition of BET bromodomain epigenetic signalling interferes with the bone-associated tumour vicious cycle

    Get PDF
    The vicious cycle established between bone-associated tumours and bone resorption is the central problem with therapeutic strategies against primary bone tumours and bone metastasis. Here we report data to support inhibition of BET bromodomain proteins as a promising therapeutic strategy that target simultaneously the three partners of the vicious cycle. Treatment with JQ1, a BET bromodomain inhibitor, reduces cell viability of osteosarcoma cells and inhibits osteoblastic differentiation both in vitro and in vivo. These effects are associated with transcriptional silencing of MYC and RUNX2, resulting from the depletion of BRD4 from their respective loci. Moreover, JQ1 also inhibits osteoclast differentiation by interfering with BRD4-dependent RANKL activation of NFATC1 transcription. Collectively, our data indicate that JQ1 is a potent inhibitor of osteoblast and osteoclast differentiation as well as bone tumour development
    corecore