149 research outputs found
Atrial Fibrillation and Delayed Gastric Emptying
Background: Atrial fibrillation and delayed gastric emptying (DGE) are common after pancreaticoduodenectomy. Our aim was to investigate a potential relationship between atrial fibrillation and DGE, which we defined as failure to tolerate a regular diet by the 7 th postoperative day. Methods: We performed a retrospective chart review of 249 patients who underwent pancreaticoduodenectomy at our institution between 2000 and 2009. Data was analyzed with Fisher exact test for categorical variables and Mann-Whitney U or unpaired T-test for continuous variables. Results: Approximately 5 % of the 249 patients included in the analysis experienced at least one episode of postoperative atrial fibrillation. Median age of patients with atrial fibrillation was 74 years, compared with 66 years in patients without atrial fibrillation (p = 0.0005). Patients with atrial fibrillation were more likely to have a history of atrial fibrillation (p = 0.03). 92 % of the patients with atrial fibrillation suffered from DGE, compared to 46 % of patients without atrial fibrillation (p = 0.0007). This association held true when controlling for age. Conclusion: Patients with postoperative atrial fibrillation are more likely to experience delayed gastric emptying. Interventions to manage delayed gastric function might be prudent in patients at high risk for postoperative atrial fibrillation
Inter-rater reliability of data elements from a prototype of the Paul Coverdell National Acute Stroke Registry
<p>Abstract</p> <p>Background</p> <p>The Paul Coverdell National Acute Stroke Registry (PCNASR) is a U.S. based national registry designed to monitor and improve the quality of acute stroke care delivered by hospitals. The registry monitors care through specific performance measures, the accuracy of which depends in part on the reliability of the individual data elements used to construct them. This study describes the inter-rater reliability of data elements collected in Michigan's state-based prototype of the PCNASR.</p> <p>Methods</p> <p>Over a 6-month period, 15 hospitals participating in the Michigan PCNASR prototype submitted data on 2566 acute stroke admissions. Trained hospital staff prospectively identified acute stroke admissions, abstracted chart information, and submitted data to the registry. At each hospital 8 randomly selected cases were re-abstracted by an experienced research nurse. Inter-rater reliability was estimated by the kappa statistic for nominal variables, and intraclass correlation coefficient (ICC) for ordinal and continuous variables. Factors that can negatively impact the kappa statistic (i.e., trait prevalence and rater bias) were also evaluated.</p> <p>Results</p> <p>A total of 104 charts were available for re-abstraction. Excellent reliability (kappa or ICC > 0.75) was observed for many registry variables including age, gender, black race, hemorrhagic stroke, discharge medications, and modified Rankin Score. Agreement was at least moderate (i.e., 0.75 > kappa ≥; 0.40) for ischemic stroke, TIA, white race, non-ambulance arrival, hospital transfer and direct admit. However, several variables had poor reliability (kappa < 0.40) including stroke onset time, stroke team consultation, time of initial brain imaging, and discharge destination. There were marked systematic differences between hospital abstractors and the audit abstractor (i.e., rater bias) for many of the data elements recorded in the emergency department.</p> <p>Conclusion</p> <p>The excellent reliability of many of the data elements supports the use of the PCNASR to monitor and improve care. However, the poor reliability for several variables, particularly time-related events in the emergency department, indicates the need for concerted efforts to improve the quality of data collection. Specific recommendations include improvements to data definitions, abstractor training, and the development of ED-based real-time data collection systems.</p
Assessing hospitals' clinical risk management: Development of a monitoring instrument
<p>Abstract</p> <p>Background</p> <p>Clinical risk management (CRM) plays a crucial role in enabling hospitals to identify, contain, and manage risks related to patient safety. So far, no instruments are available to measure and monitor the level of implementation of CRM. Therefore, our objective was to develop an instrument for assessing CRM in hospitals.</p> <p>Methods</p> <p>The instrument was developed based on a literature review, which identified key elements of CRM. These elements were then discussed with a panel of patient safety experts. A theoretical model was used to describe the level to which CRM elements have been implemented within the organization. Interviews with CRM practitioners and a pilot evaluation were conducted to revise the instrument. The first nationwide application of the instrument (138 participating Swiss hospitals) was complemented by in-depth interviews with 25 CRM practitioners in selected hospitals, for validation purposes.</p> <p>Results</p> <p>The monitoring instrument consists of 28 main questions organized in three sections: 1) Implementation and organizational integration of CRM, 2) Strategic objectives and operational implementation of CRM at hospital level, and 3) Overview of CRM in different services. The instrument is available in four languages (English, German, French, and Italian). It allows hospitals to gather comprehensive and systematic data on their CRM practice and to identify areas for further improvement.</p> <p>Conclusions</p> <p>We have developed an instrument for assessing development stages of CRM in hospitals that should be feasible for a continuous monitoring of developments in this important area of patient safety.</p
Uncovering the Molecular Machinery of the Human Spindle—An Integration of Wet and Dry Systems Biology
The mitotic spindle is an essential molecular machine involved in cell division, whose composition has been studied extensively by detailed cellular biology, high-throughput proteomics, and RNA interference experiments. However, because of its dynamic organization and complex regulation it is difficult to obtain a complete description of its molecular composition. We have implemented an integrated computational approach to characterize novel human spindle components and have analysed in detail the individual candidates predicted to be spindle proteins, as well as the network of predicted relations connecting known and putative spindle proteins. The subsequent experimental validation of a number of predicted novel proteins confirmed not only their association with the spindle apparatus but also their role in mitosis. We found that 75% of our tested proteins are localizing to the spindle apparatus compared to a success rate of 35% when expert knowledge alone was used. We compare our results to the previously published MitoCheck study and see that our approach does validate some findings by this consortium. Further, we predict so-called “hidden spindle hub”, proteins whose network of interactions is still poorly characterised by experimental means and which are thought to influence the functionality of the mitotic spindle on a large scale. Our analyses suggest that we are still far from knowing the complete repertoire of functionally important components of the human spindle network. Combining integrated bio-computational approaches and single gene experimental follow-ups could be key to exploring the still hidden regions of the human spindle system
Poly(I:C) Enhances the Susceptibility of Leukemic Cells to NK Cell Cytotoxicity and Phagocytosis by DC
α Active specific immunotherapy aims at stimulating the host's immune system to recognize and eradicate malignant cells. The concomitant activation of dendritic cells (DC) and natural killer (NK) cells is an attractive modality for immune-based therapies. Inducing immunogenic cell death to facilitate tumor cell recognition and phagocytosis by neighbouring immune cells is of utmost importance for guiding the outcome of the immune response. We previously reported that acute myeloid leukemic (AML) cells in response to electroporation with the synthetic dsRNA analogue poly(I:C) exert improved immunogenicity, demonstrated by enhanced DC-activating and NK cell interferon-γ-inducing capacities. To further invigorate the potential of these immunogenic tumor cells, we explored their effect on the phagocytic and cytotoxic capacity of DC and NK cells, respectively. Using single-cell analysis, we assessed these functionalities in two- and three-party cocultures. Following poly(I:C) electroporation AML cells become highly susceptible to NK cell-mediated killing and phagocytosis by DC. Moreover, the enhanced killing and the improved uptake are strongly correlated. Interestingly, tumor cell killing, but not phagocytosis, is further enhanced in three-party cocultures provided that these tumor cells were upfront electroporated with poly(I:C). Altogether, poly(I:C)-electroporated AML cells potently activate DC and NK cell functions and stimulate NK-DC cross-talk in terms of tumor cell killing. These data strongly support the use of poly(I:C) as a cancer vaccine component, providing a way to overcome immune evasion by leukemic cells
Meta-analysis identifies novel risk loci and yields systematic insights into the biology of male-pattern baldness
Life & Brain GmbH; the BONFOR programme of the
University of Bonn; and the Agency for Science, Technology and Research (A*STAR).
M.M.N. is a member of the DFG Excellence Cluster ImmunoSensation
- …