3,327 research outputs found

    Message

    Get PDF
    The developments of new pharmaceuticals and novel methods of prevention, diagnosis and treatment of diseases would not be possible without significant advancement in pharmaceutical science and technology. The Universal Journal of Pharmaceutical Research (UJPR) aims to cover the outstanding developments in basic and translational research, ensuring its scientific priority and significance in the field of pharmaceutical science and technology. The Journal functions on principles of scientific excellence, publication ethics, and rapid dissemination of cutting edge research and innovation. We invite you to submit your most exciting work to the UJPR and to serve as reviewers when invited to do so. Reviewer engagement is one of the most important components in the pioneering, expedited, and fair review process to which the journal is committed to. We are very fortunate to have more than 100 editorial board members of more than 48 countries. We hope that in coming days many researchers and professors will join our team. UJPR board members will ensure the highest quality of the manuscripts accepted for publication through rigorous double blind peer review process, provided by the editors and a panel of strictly chosen experts in the field. Furthermore, the open access will provide UJPR considerable advantages over conventional journals of pharmaceutical sciences with greater visibility and impact. In coming yrs, we will achieve our target to add some new things, new concepts, to the available literature. Different articles published by UJPR will be beneficial and assist many researchers for their work. I congratulate all editorial board members of for their efforts and wish for the great success of “Universal Journal of Pharmaceutical Research”. I am delighted to announce the publication of the inaugural issue of the International, peer reviewed, open access UJPR on the behalf of the Editorial board. We are foreseeing a great success of the Journal in near future

    Saltmarsh plants, but not fertilizer, facilitate invertebrate recolonization after an oil spill

    Get PDF
    Foundation species contribute to the recovery of animal communities from disturbance by engineering, by improving habitat quality, and by regulating food availability. In a salt marsh impacted by the Deepwater Horizon oil spill, we tested the hypothesis that nutrient subsidies would enhance the positive effects of the foundation species Spartina alterniflora on the initial recolonization of benthic invertebrate communities (e.g., copepods, annelids, nematodes) by augmenting food (i.e., microalgae) availability. After two months, plantings of S.alterniflora significantly elevated the densities of the polychaete Capitella capitata, meiofauna-sized annelids, and total macroinfauna over unplanted plots. After 7months, the significant effect of plantings persisted for meiofauna-sized annelids, but not for C.capitata and total macroinfauna. Plantings had no effect on copepods (including Nannopus palustris, the dominant species), nematodes, or microalgal biomass for either month. Nutrient additions did not influence any taxon, despite initial increases in benthic microalgal biomass after 2months. We hypothesize that the structural effects of plants were important to early colonization, possibly by facilitating larval settlement or ameliorating temperature and desiccation stress. Our results emphasize the importance of re-establishing foundation species in oil-impacted sites to enhance recolonization of saltmarsh annelids, but suggest that recolonization is not promoted by the addition of nutrients

    3D time series analysis of cell shape using Laplacian approaches

    Get PDF
    Background: Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes. Results: We present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells. Conclusions: The method we propose for cell segmentation is faster than the traditional random walker method or the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the possibility of eventually combining individual steps in order to speed up computations

    Gas accretion as the origin of chemical abundance gradients in distant galaxies

    Full text link
    It has recently been suggested that galaxies in the early Universe can grow through the accretion of cold gas, and that this may have been the main driver of star formation and stellar mass growth. Because the cold gas is essentially primordial, it has a very low abundance of elements heavier than helium (metallicity). As it is funneled to the centre of a galaxy, it will lead the central gas having an overall lower metallicity than gas further from the centre, because the gas further out has been enriched by supernovae and stellar winds, and not diluted by the primordial gas. Here we report chemical abundances across three rotationally-supported star-forming galaxies at z~3, only 2 Gyr after the Big Bang. We find an 'inverse' gradient, with the central, star forming regions having a lower metallicity than less active ones, opposite to what is seen in local galaxies. We conclude that the central gas has been diluted by the accretion of primordial gas, as predicted by 'cold flow' models.Comment: To Appear in Nature Oct 14, 2010; Supplementary Information included her

    Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology

    Get PDF
    Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions

    Interstellar Turbulence II: Implications and Effects

    Full text link
    Interstellar turbulence has implications for the dispersal and mixing of the elements, cloud chemistry, cosmic ray scattering, and radio wave propagation through the ionized medium. This review discusses the observations and theory of these effects. Metallicity fluctuations are summarized, and the theory of turbulent transport of passive tracers is reviewed. Modeling methods, turbulent concentration of dust grains, and the turbulent washout of radial abundance gradients are discussed. Interstellar chemistry is affected by turbulent transport of various species between environments with different physical properties and by turbulent heating in shocks, vortical dissipation regions, and local regions of enhanced ambipolar diffusion. Cosmic rays are scattered and accelerated in turbulent magnetic waves and shocks, and they generate turbulence on the scale of their gyroradii. Radio wave scintillation is an important diagnostic for small scale turbulence in the ionized medium, giving information about the power spectrum and amplitude of fluctuations. The theory of diffraction and refraction is reviewed, as are the main observations and scintillation regions.Comment: 46 pages, 2 figures, submitted to Annual Reviews of Astronomy and Astrophysic

    A hysteretic multiscale formulation for nonlinear dynamic analysis of composite materials

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.A new multiscale finite element formulation is presented for nonlinear dynamic analysis of heterogeneous structures. The proposed multiscale approach utilizes the hysteretic finite element method to model the microstructure. Using the proposed computational scheme, the micro-basis functions, that are used to map the microdisplacement components to the coarse mesh, are only evaluated once and remain constant throughout the analysis procedure. This is accomplished by treating inelasticity at the micro-elemental level through properly defined hysteretic evolution equations. Two types of imposed boundary conditions are considered for the derivation of the multiscale basis functions, namely the linear and periodic boundary conditions. The validity of the proposed formulation as well as its computational efficiency are verified through illustrative numerical experiments
    • …
    corecore