43 research outputs found

    Mountain glaciation drives rapid oxidation of rock-bound organic carbon

    Get PDF
    Over millions of years, the oxidation of organic carbon contained within sedimentary rocks is one of the main sources of carbon dioxide to the atmosphere, yet the controls on this emission remain poorly constrained. We use rhenium to track the oxidation of rock-bound organic carbon in the mountain watersheds of New Zealand, where high rates of physical erosion expose rocks to chemical weathering. Oxidative weathering fluxes are two to three times higher in watersheds dominated by valley glaciers and exposed to frost shattering processes, compared to those with less glacial cover; a feature that we also observe in mountain watersheds globally. Consequently, we show that mountain glaciation can result in an atmospheric carbon dioxide source during weathering and erosion, as fresh minerals are exposed for weathering in an environment with high oxygen availability. This provides a counter mechanism against global cooling over geological time scales

    The wider context of the Lower Jurassic Toarcian oceanic anoxic event in Yorkshire coastal outcrops, UK

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The Toarcian Oceanic Anoxic Event (T-OAE, ∼183 Ma) was characterized by enhanced carbon burial, a prominent negative carbon-isotope excursion (CIE) in marine carbonate and organic matter, and numerous geochemical anomalies. A precursor excursion has also been documented at the Pliensbachian/Toarcian boundary, but its possible causes are less constrained. The T-OAE is intensively studied in the Cleveland Basin, Yorkshire, UK, whose sedimentary deposits have been litho-, bio- and chemostratigraphically characterised. Here, we present new elemental data produced by hand-held X-ray fluorescence analysis to test the expression of redox-sensitive trace metals and detrital elements across the upper Pliensbachian to mid-Toarcian of the Cleveland Basin. Detrital elemental concentrations (Al, Si, Ti, Zr) are used as proxies for siliciclastic grain content and thus, sea-level change, which match previous sequence stratigraphic interpretations from the Cleveland Basin. The timescale of the event is debated, though our new elemental proxies of relative sea level change show evidence for a cyclicity of 350 cm that may be indicative of ∼405 kyr eccentricity cycles in Yorkshire. Trends in total organic carbon and redox-sensitive elements (S, Fe, Mo, As) confirm scenarios of widespread ocean deoxygenation across the T-OAE. The correlation of comparable trends in Mo across the T-OAE in Yorkshire and the Paris Basin suggests a similar oceanic drawdown of this element accompanying widespread anoxia in the two basins. Data from Yorkshire point to a transgressive trend at the time of the Mo drawdown, which contradicts the “basin restriction” model for the euxinic conditions that characterise the CIE interval.The Carlsberg Foundation (project 2011-01-0737 to CK) and the Danish Council for Independent Research-Natural Sciences (project 09-072715 to CK) are acknowledged for contributions to financing this project

    Experimental determination of the temperature dependence of oxygen-isotope fractionation between water and chitinous head capsules of chironomid larvae

    Get PDF
    Oxygen-isotope values of invertebrate cuticle preserved in lake sediments have been used in palaeoenvironmental reconstructions, generally with the assumption that fractionation of oxygen isotopes between cuticle and water (\upalpha_{\text{cuticle}-\text{H}_{2}\text{O}}) is independent of temperature. We cultured chironomid larvae in the laboratory with labelled oxygen-isotope water and across a range of closely controlled temperatures from 5 to 25 °C in order to test the hypothesis that fractionation of oxygen isotopes between chironomid head capsules and water (\upalpha_{\text{chironomid}-\text{H}_{2}\text{O}}) is independent of temperature. Results indicate that the hypothesis can be rejected, and that \upalpha_{\text{chironomid}-\text{H}_{2}\text{O}} decreases with increasing temperature. The scatter in the data suggests that further experiments are needed to verify the relationship. However, these results indicate that temperature-dependence of \upalpha_{\text{chironomid}-\text{H}_{2}\text{O}} should be considered when chironomid δ18O is used as a paleoenvironmental proxy, especially in cases where data from chironomids are combined with oxygen-isotope values from other materials for which fractionation is temperature dependent, such as calcite, in order to derive reconstructions of past water temperature

    The effect of interbedding on shale reservoir properties

    Get PDF
    North Sea oil is overwhelmingly generated in shales of the Upper Jurassic - basal Cretaceous Kimmeridge Clay Formation. Once generated, the oil is expelled and ultimately migrates to accumulate in sandstone or carbonate reservoirs. The source rock shales, however, still contain the portion of the oil that was not expelled. As a consequence such shales and juxtaposed non-source lithofacies can form the targets for the exploration of 'unconventional oil'.In this paper, we examine part of the Kimmeridge Clay Formation as a hybrid shale resource system within which 'Hot Shale' and organic-lean sandstone and siltstone intervals are intimately interbedded. This hybrid system can contain a greater volume of oil because of the increased storage capacity due to larger matrix porosities of the sand-silt interbeds, together with a lower adsorptive affinity in the interbedded sandstone. The relationship between the estimated volume percentages of sand and mudstone and free oil determined from Rock-Eval® S1 yields is used to place limits on the drainage of oil from source mudstone to reservoir sand at the decimeter scale. These data are used to determine oil saturations in interbedded sand-mudstone sequences at peak oil maturity. Higher values of free hydrocarbon (as evidenced by the S1 value in mudstone) suggest that more oil is being retained in the mudstone, while higher S1 values in the interbedded sands suggest the oil is being drained to saturate the larger pore spaces. High silica content in the interbeds confirms the brittleness in this mudstone-sandstone lithofacies - an important factor to be considered for fracture stimulation to successfully work in a hybrid system. The key points of this hybrid unconventional system are the thickness, storage capacity and the possibility to capture a portion of the expelled, as well as retained oil

    Changing environments during the Middle-Upper Palaeolithic transition in the eastern Cantabrian Region (Spain): direct evidence from stable isotope studies on ungulate bones

    Get PDF
    Environmental change has been proposed as a factor that contributed to the extinction of the Neanderthals in Europe during MIS3. Currently, the different local environmental conditions experienced at the time when Anatomically Modern Humans (AMH) met Neanderthals are not well known. In the Western Pyrenees, particularly, in the eastern end of the Cantabrian coast of the Iberian Peninsula, extensive evidence of Neanderthal and subsequent AMH activity exists, making it an ideal area in which to explore the palaeoenvironments experienced and resources exploited by both human species during the Middle to Upper Palaeolithic transition. Red deer and horse were analysed using bone collagen stable isotope analysis to reconstruct environmental conditions across the transition. A shift in the ecological niche of horses after the Mousterian demonstrates a change in environment, towards more open vegetation, linked to wider climatic change. In the Mousterian, Aurignacian and Gravettian, high inter-individual nitrogen ranges were observed in both herbivores. This could indicate that these individuals were procured from areas isotopically different in nitrogen. Differences in sulphur values between sites suggest some variability in the hunting locations exploited, reflecting the human use of different parts of the landscape. An alternative and complementary explanation proposed is that there were climatic fluctuations within the time of formation of these archaeological levels, as observed in pollen, marine and ice cores.This research was funded by the European Commission through a Marie Curie Career Integration Grant (FP7- PEOPLE-2012-CIG-322112), by the Spanish Ministry of Economy and Competitiveness (HAR2012-33956 and Ramon y Cajal-2011-00695), the University of Cantabria and Campus International to ABMA. Radiocarbon dating at ORAU was funded by MINECO-HAR2012-33956 project. J.J was supported initially by the FP7- PEOPLE-2012-CIG-322112 and later by a Marie Curie Individual Fellowship (H2020-MSCA-IF-2014-656122). Laboratory work, associated research expenses and isotopic analysis were kindly funded by the Max Planck Society to M.R

    Chemostratigraphy of the Jurassic System: Applications, limitations and implications for palaeoceanography

    No full text
    Current chemostratigraphical studies of the Jurassic System primarily involve the use of one sedimentary component (marine organic carbon), one divalent transition metal substituted in carbonate (manganese), and two isotopic tracers: strontium-isotope ratios ( 87Sr/ 86Sr) and carbon-isotope ratios (δ 13C carb and δ 13C org) in carbonate and in organic matter. Other parameters such as Mg/Ca and Sr/Ca ratios in calcite, oxygen-isotope ratios (δ 18O) in carbonate, sulphur-isotope ratios (δ 34S) in carbonate-hosted sulphate, nitrogen-isotope ratios (δ 15N org) in organic matter, osmium-isotope ratios ( 187Os/ 188Os) in black shales and neodymium-isotope ratios ( 143Nd/ 144Nd) in various mineral phases are also useful but at present give poor resolution because the database is incomplete or compromised by various factors. Stratigraphical patterns in total organic carbon (TOC) can be of either local or regional significance, depending on the lateral extent of the former nutrient-rich and productive water mass. Divalent manganese follows a similar pattern, being concentrated, most probably as a very early diagenetic phase, only in oxygen-depleted waters that typically underlie zones of elevated organic productivity. Shifts in Mg/Ca and Sr/Ca ratios on the time scale of ammonite subzones seem largely to reflect temperature changes. Strontium-isotope ratios from pristine skeletal calcite provide a global signal; δ 13C values from carbonates with minimal diagenetic overprint potentially do the same, although small spatial differences in palaeo-water-mass composition may have been locally significant. Oxygen-isotope determinations on carbonate rocks and fossils generally yield values that are too scattered to be stratigraphically useful, because they reflect palaeotemperature, the evaporation-precipitation balance in sea water and the impact of any diagenesis involving an aqueous phase. Nitrogen-isotope ratios in organic matter reflect the chemistry of ancient water masses as affected by nitrate utilization and denitrification, and the stratigraphical pattern of this parameter is more likely to correlate only on a regional basis. Neodymium-isotope ratios in sea water are also water mass dependent and greatly affected by regional sources and oceanic current systems. Preliminary data on sulphur-isotope ratios in carbonates and osmium-isotope ratios in organic-rich shales, both potentially offering global correlation, indicate that these tracers may be valuable, although the records at present are not sufficiently well established to allow high-resolution regional correlation. In all cases, biostratigraphically well-dated reference sections, against which the relevant geochemical data have been calibrated, are required in the first instance. To date, studies on the stratigraphical distribution of organic carbon have been principally carried out in both northern (Boreal) and southern (Tethyan) Europe; carbon-isotope stratigraphy has been undertaken primarily, but not exclusively, on bulk pelagic sediments from the Alpine-Mediterranean or Tethyan domain; and strontium-isotope stratigraphy has been undertaken largely on calcitic skeletal material (belemnites and oysters) from northern and southern Europe. In many sections, including those containing ammonites, multi-parameter chemostratigraphy can give resolution that exceeds that attainable by classic biostratigraphical means. Strontium-isotope ratios in skeletal calcite are a particularly powerful tool for illustrating changes in sedimentary rate and revealing gaps in the stratigraphical record
    corecore