571 research outputs found

    Legal Aspects of Convertibility

    Full text link

    Acute lymphoblastic leukemia subsequent to temozolomide use in a 26-year-old man: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>We report the development of acute lymphoblastic leukemia in a patient in whom temozolomide was used for the treatment of a brain tumor. Unlike that of other alkylating agents, the leukemogenic potential of temozolomide is considered to be very low, and very rarely are such cases reported.</p> <p>Case Presentation</p> <p>A 26-year-old Pakistani man who was treated for glioblastoma with temozolomide in an adjuvant setting was diagnosed to have acute lymphoblastic leukemia one year after stopping temozolomide.</p> <p>Conclusion</p> <p>Temozolomide is a highly active agent, used in the management of high-grade brain neoplasms. The agent is generally regarded to be safe, with an acceptable safety profile. Very few cases of myelodysplasia associated with temozolomide use have been reported. We report here the first case of acute lymphoblastic leukemia, which developed in a young man about one year after he finished taking temozolomide. This should provide further insight into a possible toxicity profile of this alkylating agent. This finding should be of interest to physicians in general and to medical oncologists in particular.</p

    Necator americanus and Helminth Co-Infections: Further Down-Modulation of Hookworm-Specific Type 1 Immune Responses

    Get PDF
    Parasitic infections in humans are common in tropical regions and under bad housing and sanitation conditions multiple parasitic infections are the rule rather than the exception. For helminth infections, which are thought to affect almost a quarter of the world's population, most common combinations include soil-transmitted helminths, such as hookworm, roundworm, and whipworm, as well as extra-intestinal infections by schistosomes. In order to develop and test a hookworm vaccine in endemic areas, the understanding of the impact of multiple helminth infections (co-infection) on the immune response against hookworm in infected individuals is crucial. The authors report in their article, that several parameters of the cellular (T cell markers, cytokines, chemokines) and humoral immune response (e.g. IgG4 and IgE antibodies) against hookworm are significantly affected or modulated in individuals co-infected with hookworm, roundworm and/or schistosomes. These results imply that the immune response against components of a hookworm vaccine might be altered by previous contact with other helminth species in endemic areas

    A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress.

    Get PDF
    Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14C to maintain sugar levels under stress, primarily by reducing 14C into the storage compounds in the source leaf, and decreasing 14C into the pools used for growth processes in the roots. Salinity and cold increased 14C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation

    Differential Phagocytosis of White versus Opaque Candida albicans by Drosophila and Mouse Phagocytes

    Get PDF
    The human fungal pathogen Candida albicans resides asymptomatically in the gut of most healthy people but causes serious invasive diseases in immunocompromised patients. Many C. albicans strains have the ability to stochastically switch between distinct white and opaque cell types, but it is not known with certainty what role this switching plays in the physiology of the organism. Here, we report a previously undescribed difference between white and opaque cells, namely their interaction with host phagocytic cells. We show that both Drosophila hemocyte-derived S2 cells and mouse macrophage-derived RAW264.7 cells preferentially phagocytose white cells over opaque cells. This difference is seen both in the overall percentage of cultured cells that phagocytose white versus opaque C. albicans and in the average number of C. albicans taken up by each phagocytic cell. We conclude that susceptibility to phagocytosis by cells of the innate immune system is an important distinction between white and opaque C. albicans, and propose that one role of switching from the prevalent white form into the rarer opaque form may be to allow C. albicans to escape phagocytosis

    A Comprehensive Model of Audiovisual Perception: Both Percept and Temporal Dynamics

    Get PDF
    The sparse information captured by the sensory systems is used by the brain to apprehend the environment, for example, to spatially locate the source of audiovisual stimuli. This is an ill-posed inverse problem whose inherent uncertainty can be solved by jointly processing the information, as well as introducing constraints during this process, on the way this multisensory information is handled. This process and its result - the percept - depend on the contextual conditions perception takes place in. To date, perception has been investigated and modeled on the basis of either one of two of its dimensions: the percept or the temporal dynamics of the process. Here, we extend our previously proposed audiovisual perception model to predict both these dimensions to capture the phenomenon as a whole. Starting from a behavioral analysis, we use a data-driven approach to elicit a Bayesian network which infers the different percepts and dynamics of the process. Context-specific independence analyses enable us to use the model's structure to directly explore how different contexts affect the way subjects handle the same available information. Hence, we establish that, while the percepts yielded by a unisensory stimulus or by the non-fusion of multisensory stimuli may be similar, they result from different processes, as shown by their differing temporal dynamics. Moreover, our model predicts the impact of bottom-up (stimulus driven) factors as well as of top-down factors (induced by instruction manipulation) on both the perception process and the percept itself

    A Role for the Juxtamembrane Cytoplasm in the Molecular Dynamics of Focal Adhesions

    Get PDF
    Focal adhesions (FAs) are specialized membrane-associated multi-protein complexes that link the cell to the extracellular matrix and play crucial roles in cell-matrix sensing. Considerable information is available on the complex molecular composition of these sites, yet the regulation of FA dynamics is largely unknown. Based on a combination of FRAP studies in live cells, with in silico simulations and mathematical modeling, we show that the FA plaque proteins paxillin and vinculin exist in four dynamic states: an immobile FA-bound fraction, an FA-associated fraction undergoing exchange, a juxtamembrane fraction experiencing attenuated diffusion, and a fast-diffusing cytoplasmic pool. The juxtamembrane region surrounding FAs displays a gradient of FA plaque proteins with respect to both concentration and dynamics. Based on these findings, we propose a new model for the regulation of FA dynamics in which this juxtamembrane domain acts as an intermediary layer, enabling an efficient regulation of FA formation and reorganization

    A colorimetric strategy based on dynamic chemistry for direct detection of Trypanosomatid species

    Get PDF
    Leishmaniasis and Chagas disease are endemic in many countries, and re-emerging in the developed countries. A rapid and accurate diagnosis is important for early treatment for reducing the duration of infection as well as for preventing further potential health complications. In this work, we have developed a novel colorimetric molecular assay that integrates nucleic acid analysis by dynamic chemistry (ChemNAT) with reverse dot-blot hybridization in an array format for a rapid and easy discrimination of Leishmania major and Trypanosoma cruzi. The assay consists of a singleplex PCR step that amplifies a highly homologous DNA sequence which encodes for the RNA component of the large ribosome subunit. The amplicons of the two different parasites differ between them by single nucleotide variations, known as “Single Nucleotide Fingerprint” (SNF) markers. The SNF markers can be easily identified by naked eye using a novel micro Spin-Tube device "Spin-Tube", as each of them creates a specific spot pattern. Moreover, the direct use of ribosomal RNA without requiring the PCR pre-amplification step is also feasible, further increasing the simplicity of the assay. The molecular assay delivers sensitivity capable of identifying up to 8.7 copies per μL with single mismatch specificity. The Spin-Tube thus represents an innovative solution providing benefits in terms of time, cost, and simplicity, all of which are crucial for the diagnosis of infectious disease in developing countries.This research work has received funding from Junta de Andalucía, Consejería de Economía e Innovación (project number 2012-BIO1778), the Spanish Ministerio de Economía y Competitividad (Grants CTQ2012-34778, BIO2016-80519-R, FPI Grant BES-2013- 063020). This research was partially supported by the 7th European Community Framework Program (FP7-PEOPLE-2012-CIG-Project Number 322276)

    Quantitative Multicolor Compositional Imaging Resolves Molecular Domains in Cell-Matrix Adhesions

    Get PDF
    Background: Cellular processes occur within dynamic and multi-molecular compartments whose characterization requires analysis at high spatio-temporal resolution. Notable examples for such complexes are cell-matrix adhesion sites, consisting of numerous cytoskeletal and signaling proteins. These adhesions are highly variable in their morphology, dynamics, and apparent function, yet their molecular diversity is poorly defined. Methodology/Principal Findings: We present here a compositional imaging approach for the analysis and display of multicomponent compositions. This methodology is based on microscopy-acquired multicolor data, multi-dimensional clustering of pixels according to their composition similarity and display of the cellular distribution of these composition clusters. We apply this approach for resolving the molecular complexes associated with focal-adhesions, and the time-dependent effects of Rho-kinase inhibition. We show here compositional variations between adhesion sites, as well as ordered variations along the axis of individual focal-adhesions. The multicolor clustering approach also reveals distinct sensitivities of different focaladhesion-associated complexes to Rho-kinase inhibition. Conclusions/Significance: Multicolor compositional imaging resolves ‘‘molecular signatures’ ’ characteristic to focaladhesions and related structures, as well as sub-domains within these adhesion sites. This analysis enhances the spatial information with additional ‘‘contents-resolved’ ’ dimensions. We propose that compositional imaging can serve as

    Effect of Sex and Prior Exposure to a Cafeteria Diet on the Distribution of Sex Hormones between Plasma and Blood Cells

    Get PDF
    It is generally assumed that steroid hormones are carried in the blood free and/or bound to plasma proteins. We investigated whether blood cells were also able to bind/carry sex-related hormones: estrone, estradiol, DHEA and testosterone. Wistar male and female rats were fed a cafeteria diet for 30 days, which induced overweight. The rats were fed the standard rat diet for 15 additional days to minimize the immediate effects of excess ingested energy. Controls were always kept on standard diet. After the rats were killed, their blood was used for 1) measuring plasma hormone levels, 2) determining the binding of labeled hormones to washed red blood cells (RBC), 3) incubating whole blood with labeled hormones and determining the distribution of label between plasma and packed cells, discounting the trapped plasma volume, 4) determining free plasma hormone using labeled hormones, both through membrane ultrafiltration and dextran-charcoal removal. The results were computed individually for each rat. Cells retained up to 32% estrone, and down to 10% of testosterone, with marked differences due to sex and diet (the latter only for estrogens, not for DHEA and testosterone). Sex and diet also affected the concentrations of all hormones, with no significant diet effects for estradiol and DHEA, but with considerable interaction between both factors. Binding to RBC was non-specific for all hormones. Estrogen distribution in plasma compartments was affected by sex and diet. In conclusion: a) there is a large non-specific RBC-carried compartment for estrone, estradiol, DHEA and testosterone deeply affected by sex; b) Prior exposure to a cafeteria (hyperlipidic) diet induced hormone distribution changes, affected by sex, which hint at sex-related structural differences in RBC membranes; c) We postulate that the RBC compartment may contribute to maintain free (i.e., fully active) sex hormone levels in a way similar to plasma proteins non-specific binding
    corecore