562 research outputs found

    Deep and superficial amygdala nuclei projections revealed in vivo by probabilistic tractography

    Get PDF
    Copyright © 2011 Society for Neuroscience and the authors. The The Journal of Neuroscience uses a Creative Commons Attribution-NonCommercial-ShareAlike licence: http://creativecommons.org/licenses/by-nc-sa/4.0/.Despite a homogenous macroscopic appearance on magnetic resonance images, subregions of the amygdala express distinct functional profiles as well as corresponding differences in connectivity. In particular, histological analysis shows stronger connections for superficial (i.e., centromedial and cortical), compared with deep (i.e., basolateral and other), amygdala nuclei to lateral orbitofrontal cortex and stronger connections of deep compared with superficial, nuclei to polymodal areas in the temporal pole. Here, we use diffusion weighted imaging with probabilistic tractography to investigate these connections in humans. We use a data-driven approach to segment the amygdala into two subregions using k-means clustering. The identified subregions are spatially contiguous and their location corresponds to deep and superficial nuclear groups. Quantification of the connection strength between these amygdala clusters and individual target regions corresponds to qualitative histological findings in non-human primates, indicating such findings can be extrapolated to humans. We propose that connectivity profiles provide a potentially powerful approach for in vivo amygdala parcellation and can serve as a guide in studies that exploit functional and anatomical neuroimaging.The Wellcome Trust, a Max Planck Research Award and Swiss National Science Foundation

    A Stable Sparse Fear Memory Trace in Human Amygdala

    Get PDF
    Pavlovian fear conditioning is highly conserved across species, providing a powerful model of aversive learning. In rodents, fear memory is stored and reactivated under the influence of the amygdala. There is no evidence for an equivalent mechanism in primates, and an opposite mechanism is proposed whereby primate amygdala contributes only to an initial phase of aversive learning, subsequently ceding fear memory to extra-amygdalar regions. Here, we reexamine this question by exploiting human high-resolution functional magnetic resonance imaging in conjunction with multivariate methods. By assuming a sparse neural coding, we show it is possible, at an individual subject level, to discriminate responses to conditioned (CS+ and CS-) stimuli in both basolateral and centro-cortical amygdala nuclei. The strength of this discrimination increased over time and was tightly coupled to the behavioral expression of fear, consistent with an expression of a stable fear memory trace. These data highlight that the human basolateral and centro-cortical amygdala support initial learning as well more enduring fear memory storage. A sparse neuronal representation for fear, here revealed by multivariate pattern classification, resolves why an enduring memory trace has proven elusive in previous human studies

    Impaired threat prioritisation after selective bilateral amygdala lesions.

    Get PDF
    The amygdala is proposed to process threat-related information in non-human animals. In humans, empirical evidence from lesion studies has provided the strongest evidence for a role in emotional face recognition and social judgement. Here we use a face-in-the-crowd (FITC) task which in healthy control individuals reveals prioritised threat processing, evident in faster serial search for angry compared to happy target faces. We investigate AM and BG, two individuals with bilateral amygdala lesions due to Urbach-Wiethe syndrome, and 16 control individuals. In lesion patients we show a reversal of a threat detection advantage indicating a profound impairment in prioritising threat information. This is the first direct demonstration that human amygdala lesions impair prioritisation of threatening faces, providing evidence that this structure has a causal role in responding to imminent danger

    Charge Lattices and Consistency of 6D Supergravity

    Get PDF
    We extend the known consistency conditions on the low-energy theory of six-dimensional N = 1 supergravity. We review some facts about the theory of two-form gauge fields and conclude that the charge lattice Gamma for such a theory has to be self-dual. The Green-Schwarz anomaly cancellation conditions in the supergravity theory determine a sublattice of Gamma. The condition that this sublattice can be extended to a self-dual lattice Gamma leads to a strong constraint on theories that otherwise appear to be self-consistent.Comment: 15 pages. v2: minor changes; references, additional example added; v3: minor corrections and clarifications added, JHEP versio

    "Contemplating the next maneuver": functional neuroimaging reveals intraoperative decision-making strategies

    Get PDF
    OBJECTIVE: To investigate differences in the quality, confidence, and consistency of intraoperative surgical decision making (DM) and using functional neuroimaging expose decision systems that operators use. SUMMARY BACKGROUND DATA: Novices are hypothesized to use conscious analysis (effortful DM) leading to activation across the dorsolateral prefrontal cortex, whereas experts are expected to use unconscious automation (habitual DM) in which decisions are recognition-primed and prefrontal cortex independent. METHODS: A total of 22 subjects (10 medical student novices, 7 residents, and 5 attendings) reviewed simulated laparoscopic cholecystectomy videos, determined the next safest operative maneuver upon video termination (10 s), and reported decision confidence. Video paradigms either declared ("primed") or withheld ("unprimed") the next operative maneuver. Simultaneously, changes in cortical oxygenated hemoglobin and deoxygenated hemoglobin inferring prefrontal activation were recorded using Optical Topography. Decision confidence, consistency (primed vs unprimed), and quality (script concordance) were assessed. RESULTS: Attendings and residents were significantly more certain (P < 0.001), and decision quality was superior (script concordance: attendings = 90%, residents = 78.3%, and novices = 53.3%). Decision consistency was significantly superior in experts (P < 0.001) and residents (P < 0.05) than novices (P = 0.183). During unprimed DM, novices showed significant activation of the dorsolateral prefrontal cortex, whereas this activation pattern was not observed among residents and attendings. During primed DM, significant activation was not observed in any group. CONCLUSIONS: Expert DM is characterized by improved quality, consistency, and confidence. The findings imply attendings use a habitual decision system, whereas novices use an effortful approach under uncertainty. In the presence of operative cues (primes), novices disengage the prefrontal cortex and seem to accept the observed operative decision as correct

    Wavefunctions and the Point of E8 in F-theory

    Get PDF
    In F-theory GUTs interactions between fields are typically localised at points of enhanced symmetry in the internal dimensions implying that the coefficient of the associated operator can be studied using a local wavefunctions overlap calculation. Some F-theory SU(5) GUT theories may exhibit a maximum symmetry enhancement at a point to E8, and in this case all the operators of the theory can be associated to the same point. We take initial steps towards the study of operators in such theories. We calculate wavefunctions and their overlaps around a general point of enhancement and establish constraints on the local form of the fluxes. We then apply the general results to a simple model at a point of E8 enhancement and calculate some example operators such as Yukawa couplings and dimension-five couplings that can lead to proton decay.Comment: 46 page

    Continuous relaxation of MINLP problems by penalty functions: a practical comparison

    Get PDF
    A practical comparison of penalty functions for globally solving mixed-integer nonlinear programming (MINLP) problems is presented. The penalty approach relies on the continuous relaxation of the MINLP problem by adding a specific penalty term to the objective function. A new penalty algorithm that addresses simultaneously the reduction of the error tolerances for optimality and feasibility, as well as the reduction of the penalty parameter, is designed. Several penalty terms are tested and different penalty parameter update schemes are analyzed. The continuous nonlinear optimization problem is solved by the deterministic DIRECT optimizer. The numerical experiments show that the quality of the produced solutions are satisfactory and that the selected penalties have different performances in terms of efficiency and robustness.This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundação para a Ciência e Tecnologia, within the projects UID/CEC/00319/2013 and UID/MAT/00013/2013.info:eu-repo/semantics/publishedVersio

    Rational F-Theory GUTs without exotics

    Full text link
    We construct F-theory GUT models without exotic matter, leading to the MSSM matter spectrum with potential singlet extensions. The interplay of engineering explicit geometric setups, absence of four-dimensional anomalies, and realistic phenomenology of the couplings places severe constraints on the allowed local models in a given geometry. In constructions based on the spectral cover we find no model satisfying all these requirements. We then provide a survey of models with additional U(1) symmetries arising from rational sections of the elliptic fibration in toric constructions and obtain phenomenologically appealing models based on SU(5) tops. Furthermore we perform a bottom-up exploration beyond the toric section constructions discussed in the literature so far and identify benchmark models passing all our criteria, which can serve as a guideline for future geometric engineering.Comment: 27 Pages, 1 Figur

    The Large N Limit of Toric Chern-Simons Matter Theories and Their Duals

    Full text link
    We compute the large N limit of the localized three dimensional free energy of various field theories with known proposed AdS duals. We show that vector-like theories agree with the expected supergravity results, and with the conjectured F-theorem. We also check that the large N free energy is preserved by the three dimensional Seiberg duality for general classes of vector like theories. Then we analyze the behavior of the free energy of chiral-like theories by applying a new proposal. The proposal is based on the restoration of a discrete symmetry on the free energy before the extremization. We apply this procedure at strong coupling in some examples and we discuss the results. We conclude the paper by proposing an alternative geometrical expression for the free energy.Comment: 40 pages, 7 figures, using jheppub.sty, references adde
    corecore