
Continuous Relaxation of MINLP Problems by

Penalty Functions: A Practical Comparison

M. Fernanda P. Costa1, Ana Maria A.C. Rocha2, and Edite M.G.P. Fernandes2

1 Centre of Mathematics, University of Minho, 4800-058 Guimarães, Portugal,
mfc@math.uminho.pt

2 Algoritmi Research Centre, University of Minho, 4710-057 Braga, Portugal
arocha@dps.uminho.pt, emgpf@dps.uminho.pt

Abstract. A practical comparison of penalty functions for globally solv-
ing mixed-integer nonlinear programming (MINLP) problems is pre-
sented. The penalty approach relies on the continuous relaxation of the
MINLP problem by adding a specific penalty term to the objective func-
tion. A new penalty algorithm that addresses simultaneously the reduc-
tion of the error tolerances for optimality and feasibility, as well as the
reduction of the penalty parameter, is designed. Several penalty terms
are tested and different penalty parameter update schemes are analyzed.
The continuous nonlinear optimization problem is solved by the deter-
ministic DIRECT optimizer. The numerical experiments show that the
quality of the produced solutions are satisfactory and that the selected
penalties have different performances in terms of efficiency and robust-
ness.

Keywords: MINLP, continuous relaxation, penalty function, DIRECT

1 Introduction

In a continuous relaxation context, the mixed-integer nonlinear programming
(MINLP) problem is formulated as a continuous bound constrained nonlinear
programming (BCNLP) problem, by adding a special penalty function to the
objective function in order to penalize integrality violation. In this study, we
extend the work presented in [1,2] by using an exact method with guaranteed
convergence to solve the BCNLP problem. The deterministic DIRECT optimizer
[3] is selected. Further, a new penalty-type algorithm is designed. At each iter-
ation k, the algorithm computes a δk-global minimizer of the BCNLP problem
and reduces the error tolerances – for the optimality, δk, and for feasibility, ηk –
when the integrality violation is at a satisfactory level. The performance of the
algorithm is analyzed by using a practical comparison that involves six special
penalty functions. Three well-known penalty functions taken from [4] and three
other recently proposed in [1,2] are investigated. The problem to be addressed

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/154272911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

has the form:

min f(x)
subject to x ∈ C ⊂ R

n

xi ∈ R for i ∈ Ic ⊆ I ≡ {1, . . . , n}
xj ∈ Z for j ∈ Id ⊆ I (in particular xj ∈ {0, 1})
Ic ∩ Id = ∅ and Ic ∪ Id = I

(1)

where f is a nonlinear continuous function, |Ic| and |Id| give the number of con-
tinuous and integer variables respectively and the set C, assumed to be compact,
is C = {x ∈ R

n : li ≤ xi ≤ ui, i ∈ I} (l and u are the vectors of the lower and
upper bounds on the variables respectively). Since xj ∈ Z for j ∈ Id, we define
the feasible region of problem (1) as follows:

W = {x ∈ C ⊂ R
n : xj ∈ Z for j ∈ Id}. (2)

The continuous relaxation of a MINLP is obtained by relaxing the integrality
conditions from xj ∈ Z, j ∈ Id to xj ∈ R, j ∈ Id (assuming that the f values can
be computed for xj ∈ R, j ∈ Id). We note that the presence of integer variables
implies that the feasible regionW is not convex. There are two classes of MINLP
problems. In the context of problem (1), if the function f is convex, the MINLP
problem is called convex; otherwise it is called nonconvex. A convex MINLP
problem is easier to solve than a nonconvex one, since its continuous relaxation
is itself a convex problem, and therefore likely to be tractable, at least in theory.
By contrast, the continuous relaxation of a nonconvex MINLP is itself a global
optimization problem, and therefore likely to be NP-hard. Reviews on MINLP
techniques and applications are available in [5,6].

An exact continuous reformulation of MINLP problems using a specific class
of penalty terms is studied in [4,7]. The equivalence between the MINLP problem
and the continuous reformulated penalty problem is therein established. This is-
sue concerned with penalty functions for problems with binary variables has been
addressed in [8,9]. Although any bounded MINLP problem can be reformulated
as a mixed-binary programming problem, this strategy can be troublesome and
is not recommended in practice. The use of particular penalty terms to penalize
integer constraints violation directly is preferred. In this context, a penalty term
based on the ‘erf’ function is proposed and compared with other penalty alterna-
tives available in the literature (see [1]). In [2], two different penalty functions are
proposed. The hyperbolic tangent function and the inverse hyperbolic sine func-
tion are designed and their properties are established. The equivalence property
between problem (1) and its continuous relaxation is studied. Another proposal,
that can be seen in [10], transforms the MINLP problem into an equivalent non-
linear programming (NLP) problem by adding to the original constraints some
linear and quadratic constraints. Then, a penalty function is used to transform
the NLP problem into an unconstrained one. In [11], a new exact and smooth
penalty function for the MINLP problem is presented by augmenting only one
variable whatever the number of constraints.

In the sequence of the specific penalty approach, a continuous reformulation
of the problem (1) comes out, by relaxing the integer constraints on the variables

and adding a particular penalty term to the objective function f ,

min ψ(x; ε) ≡ f(x) + P (x; ε)
subject to x ∈ C

xi ∈ R for i = 1, . . . , n,
(3)

where ε ∈ R
+ is the penalty parameter and P (x; ε) is the penalty term. Under

suitable assumptions on the function f and the penalty P (·; ε), the function
ψ(·; ε) in (3) is ‘exact’ in the sense that there exists a positive ε̄ such that for
ε ∈ (0, ε̄], problems (1) and (3) are equivalent, i.e., problems (1) and (3) have
the same global minimizers [4,7].

In this study, we aim to address two important issues related to a penalty-
type algorithm for solving MINLP problems. First, a new algorithm that is
able to compute a sequence of approximations with error tolerances increasingly
smaller on the optimality and on the integer infeasibility, is proposed. Second,
using a set of penalty terms already available in the literature, we analyze their
practical behavior when solving a benchmark set of bound constrained MINLP
problems. We have also used an exact global optimizer for solving the continuous
BCNLP problem, the DIRECT optimizer. Furthermore, this study also aims
to analyze the relative performance of the penalty functions, within the exact
penalty algorithm context, when different ε initialization and update schemes
are tested.

This paper is organized as follows. In Section 2, we present the new penalty-
based algorithm, by explaining the main ideas behind the penalty parameter
and error tolerance updates, and illustrate the penalty functions used in the
comparative experiments. In Section 3, the DIRECT optimizer is briefly de-
scribed. Section 4 presents the results of the numerical experiments and some
comparisons and Section 5 contains the conclusions of the present study.

2 Penalty algorithm

In this section, we propose a penalty algorithm to solve MINLP problems. Based
on the equivalence statement between the problems (1) and (3), when some
suitable penalty terms are used to penalize integrality violation, a finite sequence
of BCNLP problems (3) is solved. It has been proven that there exists a positive
ε̄ such that for ε ∈ (0, ε̄], both problems have the same global minimizers [4].
For the design of the penalty algorithm, we need the following definitions:

Definition 1. Let εk be fixed at iteration k and let ψ(x; εk) be a continuous
objective function defined over a bounded space C ⊂ R

n. The approximation
xk ∈ C (to the global optimal of problem (3)) is a δk-global minimizer of the
problem (3) if ψ(xk; εk) ≤ minx∈C ψ(x; ε

k)+δk, where δk > 0 is the error bound
which reflects the accuracy required for the approximation.

Definition 2. Let ηk be fixed at iteration k and let zk = [xk]r be a feasible
approximation, where zki ∈ Z, i ∈ Id results from rounding xki to the nearest

integer and zkj = xkj for j ∈ Ic. The point xk ∈ C is an ηk-feasible approximation

to the problem (1) if ‖xk − zk‖∞ ≤ ηk where ηk > 0 is the error bound which
reflects the accuracy required for the approximation.

Thus, it is shown in Algorithm 1 the main steps for finding a global solution
to problem (1). At iteration k and for a fixed value of εk, the algorithm computes
xk, a δk-global minimizer of problem (3), which is an approximation to the global
minimizer of (1). It is assumed that the sequence {xk} converges to the optimal
solution x∗ of (1), as long as ηk → 0 and δk → 0, and a finite set of decreasing
εk values are tested. The algorithm imposes the lower bound ε to prevent the
BCNLP problem of becoming very hard to be solved. On the other hand, in
practical terms, the sufficiently small positive error bounds η and δ, for ηk and

δk respectively, are used to reflect the accuracy required for the solution.

Data: f∗, kmax, 0 < ε≪ 1, 0 < δ ≪ 1, 0 < η ≪ 1, ε1 > ε, δ1 > δ, η1 > η,
σε ∈ (0, 1), σδ ∈ (0, 1), ση ∈ (0, 1);

Set k = 1;
repeat

Compute a δk-global minimizer xk of problem (3) such that

ψ(xk; εk) ≤ ψ(x; εk) + δk, for all x ∈ C; (4)

if ‖xk − zk‖∞ > ηk then

Set εk+1 = max{σεε
k, ε}, δk+1 = δk, ηk+1 = ηk;

else

Set εk+1 = εk, δk+1 = max{σδδ
k, δ}, ηk+1 = max{σηη

k, η};

end

Set k = k + 1;

until (‖xk − zk‖∞ ≤ η and |f(xk)− f∗| ≤ δ) or k > kmax;

Algorithm 1: Penalty algorithm for MINLP problems

To check when the update of the penalty parameter is timely, the algorithm
resorts to Definition 2. Thus, the penalty parameter is reduced whenever the
computed approximation xk is not an ηk-feasible approximation; otherwise the
value is maintained. Further, when xk satisfies the definition of an ηk-feasible
approximation, the error tolerance parameters δk and ηk are reduced so that a
better approximation to the global solution of the problem (3) can be found.
The algorithm stops when the computed iterate xk is in a η vicinity of a feasible
point and is within an error of δ of the global minimum f∗. We note that the
use of the known global solution to stop the algorithm has the goal of analyzing
its real effectiveness.

We note that any global optimizer for BCNLP problems can be used to
compute the δk-global minimizer xk. Since finding a global minimizer is much
more difficult than finding a local one, the algorithms specially tailored for local
optimization may converge to a local minimizer and the convergence entirely
depends on the starting approximation. Thus, the global optimizer DIRECT is
used to find a solution that satisfies (4) (see the details in the next section).

We now illustrate the set of penalty terms that will be used to solve MINLP
problems, in this penalty algorithm context. Three popular penalty terms [4,7,8]
are:

P (x; ε) =
∑

j∈Id

min
lj≤di≤uj

di∈Z

log (|xj − di|+ ε) , (5)

P (x; ε) =
1

ε

∑

j∈Id

min
lj≤di≤uj

di∈Z

{[|xj − di|+ ε]
p} , 0 < p < 1, (6)

and

P (x; ε) =
1

ε

∑

j∈Id

min
lj≤di≤uj

di∈Z

{

[1 + exp (−ρ|xj − di|)]
−1

}

, ρ > 0. (7)

The two most recently proposed penalty terms for solving MINLP problems are
based on the hyperbolic tangent function, tanh(·),

P (x; ε) =
1

ε

∑

j∈Id

min
lj≤di≤uj

di∈Z

tanh (|xj − di|+ ε) (8)

and on the inverse hyperbolic sine, asinh(·), both differentiable and strictly in-
creasing functions on [0,+∞) [2],

P (x; ε) =
∑

j∈Id

min
lj≤di≤uj

di∈Z

asinh

(

1

ε
|xj − di|+ ε

)

. (9)

Finally, the penalty term proposed in [1] uses the ‘erf’ function,

P (x; ε) =
1

ε

∑

j∈Id

min
lj≤di≤uj

di∈Z

{erf (|xj − di|+ ε)} (10)

and has been also selected for this study.
The six plots in Fig. 1 show the behavior of the above illustrated penalty

terms when four different values of ε are used (10, 1, 0.1 and 0.01). Figure 1(a)
displays the penalty term based on the ‘log’ function (see (5)), while Fig. 1(b)
and Fig. 1(c) illustrate the behavior of the penalty terms presented in (6) and
(7) respectively. In Fig. 1(d), we show the behavior of the hyperbolic tangent
function, and in Fig. 1(e) the inverse hyperbolic sine is plotted. Finally, the ‘erf’
function is plotted in Fig. 1(f). As it can be seen, the functions (6), (7), (8), (9)
and (10) are positive for ε > 0 while the function (5) may reach negative values.
The hyperbolic tangent function and the ‘erf’ function have similar behaviors as
a function of ε and the penalty functions that provide a faster penalty increase,
as the integrality violation increases, are the functions (6), (7), (8) and (10).

3 DIRECT optimizer

When solving a nonconvex optimization problem, a global optimizer is recom-
mended so that there exists some guarantee of convergence to a global solution
and to avoid convergence to a local one.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4

−3

−2

−1

0

1

2

3

|x
j
 − d

i
|

P
(x

; ε
)

‘log´ function

ε = 10

ε = 1

ε = 0.1

ε = 0.01

(a) Penalty (5).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

|x
j
 − d

i
|

P
(x

; ε
)

‘power−p´ function

ε = 10

ε = 1

ε = 0.1

ε = 0.01

(b) Penalty (6).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

|x
j
 − d

i
|

P
(x

; ε
)

‘exp´ function

ε = 10

ε = 1

ε = 0.1

ε = 0.01

(c) Penalty (7).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

|x
j
 − d

i
|

P
(x

; ε
)

‘tanh´ function

ε = 10

ε = 1

ε = 0.1

ε = 0.01

(d) Penalty (8).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

|x
j
 − d

i
|

P
(x

; ε
)

‘asinh´ function

ε = 10

ε = 1

ε = 0.1

ε = 0.01

(e) Penalty (9).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

|x
j
 − d

i
|

P
(x

; ε
)

‘erf´ function

ε = 10

ε = 1

ε = 0.1

ε = 0.01

(f) Penalty (10).

Fig. 1. Behavior of the penalty terms, for four different values of ε.

This section aims to briefly describe the main ideas behind a partition-based
algorithm, called DIRECT [3], that is capable of searching for a global optimal
solution to the BCNLP problem by defining a sequence of partitions of the search
region C. The DIRECT (DIviding RECTangles) algorithm has been originally
proposed to obtain global solutions to continuous BCNLP problems [3], where
the objective penalty function ψ must satisfy a Lipschitz condition

|ψ(x1; ·)− ψ(x2; ·)| ≤ K‖x1 − x2‖ for all x1, x2 ∈ C,

for K > 0, by producing finer and finer partitions of the hyperrectangles gen-
erated from C. The algorithm is a modification of the standard Lipschitzian
approach that does not require any derivative information or the value of the
Lipschitz constant K. DIRECT has the ability to explore potentially optimal
regions aiming to converge to the global optimum, while avoiding being trapped
in local optima. This search is carried out by dividing all hyperrectangles that
are potentially optimal. Notice the following definition:

Definition 3. Given the partition {Ci : i ∈ J} of C, let ν be a positive constant
and let ψmin be the current best objective function value. A hyperrectangle j is
said to be potentially optimal if there exists some rate-of-change constant K̂ > 0
such that

ψ(cj ; ·)− K̂dj ≤ ψ(ci; ·)− K̂di, for all i ∈ J

ψ(cj ; ·)− K̂dj ≤ ψmin − ν|ψmin|
(11)

where cj is the center and dj is a measure of the size of the hyperrectangle j.

We note that the use of K̂ intends to show that it is not the Lipschitz constant.
The division of the potentially optimal hyperrectangles is carried out only along
the dimensions of maximal size, the division is into thirds and follows a specific
order. The reader is referred to [3,12,13] for details. A subsequential convergence
result for the DIRECT algorithm is established in [14]. In [3], the DIRECT
algorithm for solving the BCNLP problem is described by its six main steps:

1. In the initialization step, the search space C is normalized to an n-dimensional
unit hypercube, the center point c1 and ψ(c1; ·) are determined, ψmin, the
iteration counter and the set of indices of partition-based hyperrectangles
are initialized.

2. In the selection step, for each partition of C, the set of potentially optimal
hyperrectangles are identified.

3. In the sampling step, for each potentially optimal hyperrectangle, the set of
dimensions with the maximum size is identified, and the objective function
ψ is sampled at center points along those identified dimensions.

4. In the division step, using a specific order, hyperrectangles are divided into
thirds along those identified dimensions.

5. The iteration step aims to update ψmin, the set of indices of partition-based
hyperrectangles, and the set of potentially optimal hyperrectangles not yet
explored.

6. In the termination step, the stopping conditions are checked so that steps
2–5 are repeated or the algorithm is terminated.

In the Algorithm 1 context, the δk-global minimizer of problem (3) is found
when the condition (4) illustrated in the algorithm is satisfied. However, during
this algorithm’s practical evaluation (assuming that f∗ is provided) the DIRECT
optimizer terminates when the condition

ψ(xk; εk) ≤ f∗ + C(εk) + δk

holds for the iterate xk. For fixed εk, the term C(εk) ≡ P (x∗; εk) = P (x̄; εk) is
constant for any x̄ ∈W , and equals |Id| log(ε

k) for the penalty (5), |Id|(ε
k)p−1 for

the penalty (6), |Id|(2ε
k)−1 for the penalty (7) (with ρ = 1), |Id|(ε

k)−1 tanh(εk)
for the penalty (8), |Id| asinh(ε

k) for the penalty (9) and |Id|(ε
k)−1 erf(εk) for

the penalty (10).
Alternatively, DIRECT is stopped when the first, a maximum number of

iterations, or a maximum number of function evaluations, is reached.

4 Numerical Experiments

In this section, a practical comparison of the penalty terms illustrated in Sec-
tion 2, for solving MINLP problems, in the context of the proposed Algorithm 1
and using the DIRECT optimizer for solving the continuous BCNLP problem
(3), is presented. The numerical experiments were carried out on a PC Intel Core
2 Duo Processor E7500 with 2.9GHz and 4Gb of memory RAM. The algorithm
was coded in Matlab Version 8.1 (R2013a).

The comparisons rely on 18 instances of 14 well-known MINLP problems.
Eight problems have n = 2 variables, three have n = 4 variables, problem
Dixon-Price is tested with n = 2 and n = 4, problem Sum Squares is tested with
n = 5, and problems Ackley, Levy and Rastrigin are tested with n = 5 and 10.
See [2] for the full description of the problems.

The parameters in the Algorithm 1 are set as follows: δ1 = 1, η1 = 1, δ=1E-
04, η=1E-08, σδ = 0.1, ση = 0.1 and kmax = 20. The threshold number of
iterations and function evaluations in the DIRECT solver are set to 100 and
50000 respectively. Other parameters for the penalty functions are p = 0.5 and
ρ = 1.

The two parameters ε1 (initialization of the penalty parameter) and σε (the
reduction factor) are analyzed in terms of penalty sensitivity, i.e., we aim to
conclude if any of the penalty terms performs consistently better than the others
for some pair of values of the parameters. During these experiments ε is set to
1E-12. The comparisons are made by using a graphical procedure to visualize the
differences in the performance of the six penalty terms, in relative terms on the
18 instances, known as performance profiles [15]. The performance is analyzed
in terms of the efficiency of the penalty. Thus, for the performance metric, Pm,
the number of function evaluations is used. The performance function of case j
in comparison is the (cumulative) distribution function Fj(τ) (for Pm), i.e., is
the ‘probability’ that the case j is within a factor τ of the best possible case.
For each j, the Fj(τ) is a (weakly) monotonically increasing function in τ . A
performance profile is the plot of all functions Fj(·). The higher the ‘probability’

the better. A higher value for τ = 1 means that the corresponding case achieves
the smallest metric value, i.e., the fewer number of function evaluations, mostly.

The performance profile for the configuration ε1 = 10 and σε = 0.1 is
shown in Fig. 2. We also show in Table 1 the percentage of success (in %)
for each penalty. Here, the run with a certain penalty is considered a success
if the algorithm terminates with the solution xk that satisfies the conditions
‖xk − zk‖∞ ≤ η and |f(xk)− f∗| ≤ δ, for the given values of η and δ.

From the Fig. 2 (and for τ = 1) we may conclude that the probability that the
‘log’ function, as well as the ‘asinh’ function, are the winners on a given problem
is about 0.39 since each one of them requires fewer function evaluations than the
other penalty functions in seven of the 18 instances. The ‘power-p’ function has
a probability of winning of 0.22 (requiring fewer function evaluations in four of
the 18 instances). The other penalties in comparison did not reach the smallest
number of function evaluations in any of the tested instances. Although being
one of the most efficient (with the configuration ε1 = 10, σε = 0.1), the ‘log’
function is the least robust with a percentage of success of 78%, against 83% of
the other penalties (see the percentages along the first row of the Table 1).

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

F
(τ

)

Configuration ε1=10, σε=0.1

‘log’ function
‘power−p’ function
‘exp’ function
‘tanh’ function
‘asinh’ function
‘erf’ function

Fig. 2. Comparison of the six penalty terms, when ε
1 = 10 and σε = 0.1, based on the

performance profile.

Figure 3 shows the performance profile when ε1 = 1 and σε = 0.5 are consid-
ered. We may conclude that the penalty with the highest probability of winning,
requiring fewer function evaluations to reach the global solution, is the ‘power-
p’, 0.44, followed by the ‘asinh’ function with a probability of 0.22, by the ‘erf’
with a probability of 0.17 and by ‘log’ and ‘tanh’, both with probability of 0.11.
The percentages of success of this configuration are shown along the second row
of the Table 1. The penalties ‘exp’, ‘tanh’ and ‘erf’ are the most robust.

Table 1. Percentage of success (%) for each penalty and each configuration

Configuration ‘log’ ‘power-p’ ‘exp’ ‘tanh’ ‘asinh’ ‘erf’

ε
1 = 10, σε = 0.1 78 83 83 83 83 83
ε
1 = 1, σε = 0.5 61 78 83 83 72 83
ε
1 = 0.1, σε = 0.5 56 67 67 67 56 67

On the other hand, by analyzing the performance functions in Fig. 4, where
the configuration ε1 = 0.1 and σε = 0.5 is tested, it is possible to conclude
that the most efficient penalty is the ‘power-p’ with a probability of winning of
0.61, followed by the ‘erf’ penalty with a probability of 0.22, by the ‘log’ with
probability of 0.11 and by the ‘exp’ with probability of 0.06. Further, from the
percentages shown in the third row of the Table 1, we conclude that this is the
configuration that produces the worst results, in the sense that the required final
error tolerances for the optimality, δ, and for the feasibility, η, are attained for a
much smaller number of instances, being even so the penalties ‘power-p’, ‘exp’,
‘tanh’ and ‘erf’ the most robust.

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

F
(τ

)

Configuration ε1=1, σε=0.5

‘log’ function
‘power−p’ function
‘exp’ function
‘tanh’ function
‘asinh’ function
‘erf’ function

Fig. 3. Comparison of the six penalty terms, when ε
1 = 1 and σε = 0.5, based on the

performance profile.

5 Conclusions

In this paper, we have developed a new penalty algorithm for solving nonconvex
MINLP problems. The algorithm is based on a continuous relaxation of the
MINLP problem by adding to the objective function a specific penalty term

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

F
(τ

)

Configuration ε1=0.1, σε=0.5

‘log’ function
‘power−p’ function
‘exp’ function
‘tanh’ function
‘asinh’ function
‘erf’ function

Fig. 4. Comparison of the six penalty terms, when ε
1 = 0.1 and σε = 0.5, based on

the performance profile.

that aims to penalize integrality violation. The algorithm computes (a sequence
of) δk-global minimizers of a BCNLP problem, for a decreasing sequence of δk

values, using the DIRECT optimizer. A sequence of decreasing error tolerances,
incorporated in the algorithm to measure integer infeasibility, is used to check
when the update of the penalty parameter is timely. Six penalty terms are tested
in the proposed algorithm context.

Numerical experiments have been carried out to analyze the penalty term
sensitivity to the initialization and update scheme of the penalty parameter. The
comparisons are based on the performance profile relative to an efficiency metric.
With this comparative study, we are able to conclude that the selected penalties
behave differently as far as the efficiency metric is concerned. Two penalties,
one based on a power function and the other based on the ‘asinh’ function, are
consistently the most efficient, and the penalties with the power term and with
the ‘log’ function are less sensitive to changes in ε. On the other hand, penalties
‘asinh’ and ‘erf’ are the ones whose performances vary the most with the penalty
parameter values. It has been shown that the configuration that uses 10 as the
initial value and 0.1 as the reduction factor produces the best results in terms
of number of instances that converged to the global solution with the required
accuracy. Overall, in comparative terms, we may say that the penalties ‘exp’,
‘tanh’ and ‘erf’ are consistently more robust and the penalties ‘power-p’ and
‘asinh’ require in general fewer function evaluations.

Acknowledgments. The authors wish to thank two anonymous referees for their
comments and suggestions.

This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and

FCT - Fundação para a Ciência e Tecnologia, within the projects UID/CEC/00319/2013

and UID/MAT/00013/2013.

References

1. Francisco, R.B., Costa, M.F.P., Rocha, A.M.A.C., Fernandes, E.M.G.P.: Compar-
ison of penalty functions on a penalty approach to mixed-integer optimization. In
AIP Conf. Proc. vol. 1738 (ICNAAM 2015) 300008-1–300008-4 (2016)

2. Costa, M.F.P., Rocha, A.M.A.C., Francisco, R.B., Fernandes, E.M.G.P.: Firefly
penalty-based algorithm for bound constrained mixed-integer nonlinear program-
ming. Optimization, 65(5), 1085–1104 (2016)

3. Jones D.R., Perttunen C.D., Stuckman B.E.: Lipschitzian optimization without
the Lipschitz constant. Journal of Optimization Theory and Applications, 79(1),
157–181 (1993)

4. Lucidi, S., Rinaldi, F.: Exact penalty functions for nonlinear integer program-
ming problems. Journal of Optimization Theory and Applications, 145(3), 479–488
(2010)

5. Burer, S., Letchford, A.N.: Non-convex mixed-integer nonlinear programming: A
survey. Surveys in Operations Research and Management Science, 17(2), 97–106
(2012)

6. Boukouvala, F., Misener, R., Floudas, C.A.: Global optimization advances in
mixed-integer nonlinear programming, MINLP, and constrained derivative-free op-
timization, CDFO. European Journal of Operational Research, 252(3), 701–727
(2016).

7. Lucidi, S., Rinaldi, F.: An exact penalty global optimization approach for mixed-
integer programming problems. Optimization Letters, 7(2), 297–307 (2013)

8. Murray, W., Ng, K.-M.: An algorithm for nonlinear optimization problems with
binary variables. Computational Optimization and Applications, 47(2), 257–288
(2010)

9. Shandiz, R.A., Mahdavi-Amiri, N.: An exact penalty approach for mixed integer
nonlinear programming problems. American Journal of Operations Research, 1(3),
185–189 (2011)

10. Yu, C., Teo, K.L.,Bai, Y.: An exact penalty function method for nonlinear mixed
discrete programming problems, Optimization Letters, 7(1), 23–38 (2013)

11. Ma, C., Zhang, L.: On an exact penalty function method for nonlinear mixed
discrete programming problems and its applications in search engine advertising
problems. Applied Mathematics and Computation, 271, 642–656 (2015)

12. Gablonsky J.M., Kelley C.T.: A locally–biased form of the DIRECT algorithm.
Journal of Global Optimization, 21(1), 27–37 (2001)

13. Finkel D.E.: DIRECT Optimization Algorithm User Guide. Center for Research
in Scientific Computation, North Carolina State University (2003)

14. Finkel D.E., Kelley C.T.: Convergence analysis of the DIRECT algorithm. Techni-
cal Report CRSC-TR04-28, Center for Research in Scientific Computation, North
Carolina State University (2004)

15. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Mathematical Programming, Series A, 91(2), 201–213 (2002)

	Lecture Notes in Computer Science
	Introduction
	Penalty algorithm
	DIRECT optimizer
	Numerical Experiments
	Conclusions

