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A Stable Sparse Fear Memory Trace in Human Amygdala
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Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom

Pavlovian fear conditioning is highly conserved across species, providing a powerful model of aversive learning. In rodents, fear memory
is stored and reactivated under the influence of the amygdala. There is no evidence for an equivalent mechanism in primates, and an
opposite mechanism is proposed whereby primate amygdala contributes only to an initial phase of aversive learning, subsequently
ceding fear memory to extra-amygdalar regions. Here, we reexamine this question by exploiting human high-resolution functional
magnetic resonance imaging in conjunction with multivariate methods. By assuming a sparse neural coding, we show it is possible, at an
individual subject level, to discriminate responses to conditioned (CS� and CS�) stimuli in both basolateral and centro-cortical
amygdala nuclei. The strength of this discrimination increased over time and was tightly coupled to the behavioral expression of fear,
consistent with an expression of a stable fear memory trace. These data highlight that the human basolateral and centro-cortical
amygdala support initial learning as well more enduring fear memory storage. A sparse neuronal representation for fear, here revealed by
multivariate pattern classification, resolves why an enduring memory trace has proven elusive in previous human studies.

Introduction
A substantial literature indicates the rodent amygdala stores a
fear memory trace during and after delay conditioning (Maren,
1998, 1999; Zimmerman et al., 2007; Pape and Pare, 2010). Evi-
dence that this is the case for humans is at best ambiguous
(Mechias et al., 2010) (Table 1), and a different temporal course is
proposed where an enhanced conditioned stimulus (CS� vs
CS�) response during learning habituates after a few CS presen-
tations in human functional magnetic resonance imaging (fMRI)
studies (Büchel et al., 1998; Morris et al., 2001; Morris and Dolan,
2004; Marschner et al., 2008). This is diametrically opposite to the
generality of rodent data and reinforces the view that the primate
and human amygdala is concerned solely with initial learning,
and not with storage of a stable CS�/unconditioned stimulus
(US) association. One interpretation of these data is that this
initial amygdala response reflects deployment of attentional re-
sources toward a CS with uncertain predictive value (Whalen,
1998; Sander et al., 2003).

Functional neuroimaging studies of fear learning in humans
have heretofore rested on mass-univariate fMRI methods, re-
porting a higher mean response to a CS�, presumably elicited by
activation of a large neural mass. Yet such findings ignore evi-
dence from rodents that the CS–US association is stored in a
small number of sparsely distributed neurons (Reijmers et al.,
2007). If these units, once activated, suppress surrounding neu-

rons, then this would provide a pattern of activity not detectable
with mass-univariate approaches. Although the resolution of
fMRI is orders of magnitude lower than the size of individual
neurons, an uneven distribution of active and inactive neurons
will generate a biased signal within individual voxels such that
some will consistently show more, and others less, signal (Nor-
man et al., 2006; Swisher et al., 2010). This possibility provides a
powerful motivation for exploiting multivariate analysis, an ap-
proach commonplace for pattern decoding in vision and mem-
ory research. Here, our interest lay not in decoding but in
detecting multivariate patterns of responses that could reflect
activity of sparsely distributed neurons that we predict encode a
learnt CS–US association.

We hypothesized a temporally extended BOLD response pat-
tern for CS� relative to a CS�, a pattern reflecting the amygda-
la’s role in learning and expression of conditioned fear. As we
were interested in a mechanism that is invariant across individu-
als, we analyzed individual subjects and focused our approach on
showing replicability across these individuals rather than exploit-
ing a conventional approach of group analysis. Thus, we report
data from six healthy persons, scanned with isotropic 1.5 mm
high-resolution fMRI (see Fig. 2A) while engaged in 180 trials of
a standard delay conditioning task, where one of two differently
colored circles (the CS�) predicted a 50% probability of receiv-
ing an electric shock (US) 3.5 s after CS onset, and the other one
(the CS�) predicted the absence of electric shock (Fig. 1). Antic-
ipatory skin conductance responses (Bach et al., 2010a) (aSCR)
served as our behavioral index of aversive learning. Note that we
only analyzed trials without a US to avoid confounds associated
with an overlap in CS and US responses.

Materials and Methods
The study was approved by a local ethics committee. Seven healthy right-
handed individuals (five male; two female; mean age � SD, 23.1 � 3.5
years) without history of psychiatric or neurological disease took part in
a standard delay conditioning paradigm during functional imaging; one
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male subject was excluded from fMRI analysis due to movement arti-
facts, thus we provide data from n � 6 individuals. An eighth participant
had a panic attack during functional scanning and did not complete the
study. CS stimuli were a blue and an orange circle, and US a discomfort-
ing electric shock. CS color was balanced across participants; CS were
presented in the center of a screen/mirror system on a black background.
Participants were tasked to indicate the color with a left/right button
press on a keypad held in the right hand. CS stayed on the screen for 4 s;
in punished trials, a US followed 3.5 s after CS onset as a 500 Hz train of
electrical pulses (square wave, individual pulse duration: 1 ms; total du-
ration: 500 ms, 400 V; mean current � SD: 0.22 � 0.06 mA) via a
pin-shaped electrode attached to the left forearm, and coterminated with
the CS. The intertrial interval was randomly determined on each trial to
be 7, 9, or 11 s. Between trials, a white fixation cross was shown on the
screen. There were 180 trials: 90 presentations for each CS� and CS�;
CS� was followed by US on 45 trials. The experiment was divided into

four blocks of 45 trials each. Only CS� trials without US were analyzed to
avoid contamination of CS and US responses in BOLD and SCR. Skin
conductance was recorded from the left second and third finger (Bach et
al., 2010b) and anticipatory sympathetic responses were extracted in a
model-based approach (Bach et al., 2010a). Heart rate and respiration
were monitored using a pulse oxymeter and breathing belt (Hutton et al.,
2011).

At the beginning of each experiment, we acquired field maps with a
double echo gradient-echo fast low-angle shot (FLASH) sequence (TE,
10.0 and 12.46 ms; TR, 1020 ms; matrix size, 64 � 64) using 64 slices
covering the whole head (voxel size, 3 � 3 � 3 mm). We acquired
T2*-weighted single-shot gradient-echo echo-planar images (EPI) in
oblique transverse orientation [flip angle �, 90°; bandwidth (BW), 1953
Hz/pixel; phase-encoding (PE) direction, anterior–posterior; bandwidth
in PE direction, 14 Hz/pixel; TE, 30 ms; asymmetric echo shifted forward
by 26 PE lines; effective TR, 3000 ms). The manufacturer’s standard
automatic 3D-shim procedure was performed before functional scan-
ning. Each EPI volume contained 30 contiguous slices of 1.5 mm thick-
ness (field of view, 192 � 192 mm 2; matrix size, 128 � 128). BOLD
sensitivity losses in the orbitofrontal cortex and the amygdala due to
susceptibility artifacts were intrinsically minimized by the high spatial
resolution and by applying a z shim gradient moment of �0.4 mT/m�ms,
a slice tilt of �30°, and a positive PE gradient polarity (Weiskopf et al.,
2006, 2007a). We acquired four sessions of 202 volumes with on-line
image reconstruction and real-time image quality assurance (Weiskopf
et al., 2007b). The first four volumes per session were discarded to allow
for T1 equilibration, and each session was concluded by 10 volumes
without stimulus presentation. For coregistration of functional images,
we acquired a T1-weighted image using a 3D FLASH sequence (isotropic
spatial resolution, 1 mm; �, 18°; TR, 9.0 ms; TE, 3.5 ms).

High-resolution 3D modified driven equilibrium Fourier transforma-
tion (MDEFT) anatomical images were acquired on a 3 T Trio whole-
body scanner (Siemens). Two hundred twenty-four sagittal partitions

Table 1. Overview of fMRI delay conditioning experiments

Author CS US CS� � CS� Habituation SCR recorded aSCR

LaBar et al., 1998 Colored shapes Electric shock ✘✘* ✘✘ ✘
Büchel et al., 1998 Neutral faces Loud noise ✘✘ ✓✓ ✓ ✘✘
Morris et al., 1998 Angry faces Loud noise ✓✓ ✘✘ ✓ ✘✘
Knight et al., 1999 Colored lights Electric shock ✘✘ ✘✘ ✘
Pine et al., 2001 Colored lights Pressure pain ✘✘ ✘✘* ✘
Morris et al., 2001 Angry faces Loud noise ✓✘ ✘✓ ✘
Veit et al., 2002 Neutral faces Pressure pain ✘✘ ✘✘* ✓ ✘✘
Gottfried et al., 2002 Neutral faces Unpleasant odor ✘✘ ✘✘ ✘
Armony and Dolan, 2002 Angry faces Loud noise ✓✓ ✘✘ ✘
Cheng et al., 2003 Colored lights Electric shock ✘✘ ✘✘ ✓ ✘✘*
Gottfried and Dolan, 2004 Neutral faces Unpleasant odor ✘✓ ✘✘ ✘
Morris and Dolan, 2004 Neutral faces Loud noise ✓✘ ✘✓ ✘
Knight et al., 2004a Colored shapes Electric shock ✘✘ ✘✘ ✓ ✘✘
Knight et al., 2004b Colored lights Electric shock ✘✘ ✘✘ ✓ ✘✘
Birbaumer et al., 2005 Neutral faces Pressure pain ✓✘ ✘✘* ✓ ✘✘
Knight et al., 2005 Sine tones Loud noise ✘✘ ✘✘ ✓ ✘✘*
Tabbert et al., 2006 Geometric shapes Electric shock ✘✓ ✘✘ ✓ ✘✘
Cheng et al., 2006 Colored shapes Electric shock ✘✘ ✘✘ ✓ ✘✘*
Cheng et al., 2007 Geometric shapes Electric shock ✘✘ ✘✘ ✓ ✘✘*
Milad et al., 2007 Colored lights Electric shock ✘✓ ✘✘ ✓ ✘✘
Jensen et al., 2008 Colored shapes Electric shock ✘✘ ✘✘ ✓ ✘✘
Schiller et al., 2008 Angry faces Electric shock ✘✘* ✘✘ ✓ ✘✘
Delgado et al., 2008 Colored shapes Electric shock ✘✘ ✘✘ ✓ ✘✘
Marschner et al., 2008 Geometric shapes Electric shock ✘✘ ✘✓ ✓ ✘✘
Knight et al., 2009 Sine tones Loud noise ✘✓ ✘✘ ✓ ✘✘

Experiments were identified by using the keywords “fMRI” or “BOLD” and “conditioning” in PubMed and iteratively searching references of each identified study. For drug/patient studies, only the control condition is listed here. Several
studies are not listed because they did not report results from the initial learning phase (Glascher and Buchel, 2005; Kalisch et al., 2006, 2009) or they were drug/patient studies not reporting results for the (full) placebo/control group
(Critchley et al., 2002; Eippert et al., 2008). Also, studies that implicitly used an instructed learning paradigm (Jensen et al., 2003) are not included, or only the condition not involving instructed fear is listed (Tabbert et al., 2006). In a study
investigating emotion regulation strategies, only the main effects across the different strategies are listed (Delgado et al., 2008). In order to control for false positives, results are only shown when they survived small volume or whole-brain
correction for multiple testing at least at p � 0.05 (false-defense ratio or family-wise error).

We indicate, for both hemispheres separately, whether amygdala activity was reported for the contrasts CS� � CS�, differential habituation, and, if SCR was recorded, for a correlation with anticipatory SCRs. ✘, No activation reported;
✓, activation reported.

*, Authors reported activation at an uncorrected level.

Figure 1. Experimental timeline for one of 180 trials. The CS� or CS� appears after a
fixation cross for 4 s, during which the participant indicates the color of the CS with a key press.
In punished CS� trials, it coterminates with an electric shock of 500 ms duration. The intertrial
interval is randomly varied between 7 and 11 s.
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were acquired twice with an image matrix of
304 � 288 (read � phase) and twofold over-
sampling in read direction (head/foot direc-
tion) to prevent aliasing (isotropic spatial
resolution, 0.77 mm; �, 16°; TR, 7.92 ms; TE,
2.48 ms; TI, 910 ms; BW, 196 Hz/pixel). Special
radio frequency excitation pulses were used to
compensate for B1 inhomogeneities of the
transmit coil in superior/inferior and anterior/
posterior directions (Deichmann et al., 2004).
Images were reconstructed by performing a
standard 3D Fourier transform, followed by
modulus calculation. No data filtering was ap-
plied in k space or in the image domain. The
two images were realigned and averaged offline
using SPM8 functions.

To provide an accurate definition of our re-
gion of interest, the amygdala was manually
delineated on T1-weighted images using Anat-
omist (http://www.brainvisa.info) as described
previously (Bach et al., 2011). The inferior/
posterior and anterior/superior boundary, in
general clearly visible on at least a few sagittal
slices, were marked; the most posterior points
were the posterior nuclei bordering the ventral
horn of the anterior extent of the lateral (tem-
poral) ventricle and white matter; the inferior
boundary separating amygdala from hippocam-
pus and lateral ventricle; and the anterior bound-
ary separating amygdala from white matter,
entorhinal cortex, gyrus ambiens, and uncus. We
then proceeded from posterior to anterior in cor-
onal slices, using the sagitally marked boundaries,
hippocampus, optical tract, and sulcus semian-
nularis as guiding landmarks. Each slice was
compared against schematic tables of an anatom-
ical atlas (Mai et al., 2008). Particular care was
taken not to include the peduncle of the lentiform
nucleus, hippocampal tissue, or periamygdaloid
tissue between lateral amygdala and white matter
of the temporal lobe. Amygdala boundaries were
then straightened in sagittal slices and once more
controlled in coronal slices. Mask boundaries

were automatically smoothed using the SPM8 (http://www.fil.ion.u-
cl.ac.uk/spm) functions spm_erode and spm_dilate.

The manually segmented amygdala region of interest was parcellated
into two nucleus groups (Fig. 2A) based on their connectivity profile, as
described previously (Bach et al., 2011). In brief, we acquired diffusion-
weighted images (Nagy et al., 2007), corrected susceptibility-induced
distortion (Andersson et al., 2003), and computed fiber tracts from the
amygdala to lateral orbitofrontal cortex and temporal pole (Behrens et
al., 2003, 2007). The connectivity profile for each amygdala voxel was fed
into an automatic k-means clustering procedure that generated two spa-
tially contiguous clusters, one of which connected stronger to the lateral
orbitofrontal cortex, the other to the temporal pole. Both anatomical
location of the clusters and their connectivity profile suggest that they
correspond to the basolateral and centro-cortical nucleus group.

Functional images were analyzed in a standard preprocessing pipeline
in SPM8. EPI images were generated off-line from the complex k-space
raw data using a generalized reconstruction method based on the mea-
sured EPI k-space trajectory to minimize ghosting. They were then cor-
rected for geometric distortions caused by susceptibility-induced field
inhomogeneities. A combined approach was used that corrects for both
static distortions and changes in these distortions due to head motion
(Andersson et al., 2001; Hutton et al., 2002). The static distortions were
calculated for each subject from a field map that was estimated from the
double-echo FLASH images using the FieldMap toolbox as implemented
in SPM8. Using these parameters, the EPI images were then realigned and
unwarped, a procedure that allows the measured static distortions to be

Figure 2. For functional imaging, 30 oblique transverse slices were centered over the amygdala; here overlaid on the 0.77 mm high-
resolution T1-weighted image (B). The region of interest, manually segmented on high-resolution T1-weighted images, was parcellated
into basolateral (blue) and centro-cortical (red) nucleus group, based on anatomical connectivity profiles determined by probabilistic
tractography of diffusion weighted images (A). Data from each voxel and each trial of the regions of interest were entered into multivariate
analysis. For searchlight analysis, data were extracted from a moving sphere and results were mapped onto the center of the sphere.

Table 2. Multivariate analysis results for each individual and region of interest

Full amygdala Deep Superficial

L R B L R B L R B

CS� versus CS�
Participant 1 * * *
Participant 2 * ** *
Participant 3 *
Participant 4 * * * *
Participant 5 * * ** * *
Participant 6 * * ** * * *

Time effect CS� versus time effect CS�
Participant 1 * * **
Participant 2 ** ** ** **
Participant 3
Participant 4 ** ** ** **
Participant 5
Participant 6 * ** * **

aSCR, controlling for CS� versus CS�
Participant 1 * * ** *
Participant 2 ** * ** **
Participant 3 ** * ** ** * * * *
Participant 4 ** ** * *
Participant 5 ** ** ** ** ** ** ** **
Participant 6 *

Regions of interest were full amygdala and deep and superficial nucleus groups, each for the left (L) and right
(R) hemispheres and combined for both (B) hemispheres. *p � 0.05 and **p � 0.01 for the permutation test.
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included in the estimation of distortion changes associated with head
motion. The motion-corrected images were then coregistered to an un-
warped EPI image with 90 slices and whole-brain coverage, which was in
turn aligned to the individual’s anatomical 1-mm-resolution 3D FLASH
image using a 12-parameter affine transformation; masks for the regions
of interest generated from 0.77-mm-resolution T1-weighted images
were coregistered to the 3D FLASH image as well.

For multivariate analysis, we estimated the response amplitude per
trial (Schurger et al., 2010) by using, for each trial, one regressor for CS
onset and another for US onset, without differentiating between the
different CS. No time derivative was used, and as regressors of no interest
we added cardiac phase (10 regressors), respiratory phase (6 regressors),
and respiratory volume (1 regressor), similar to the method described by
Hutton et al. (2011). This model is necessarily underspecified such that
parameter estimates have little precision; however, this will increase
noise in the estimates and is agnostic to the difference between a CS� not
followed by a US, and a CS�, hence the resulting parameter estimates
will be unbiased with respect to our hypotheses. For each region of inter-
est, parameter estimates for all CS not followed by US were extracted
and z-transformed voxelwise. Because there is evidence for a time-
dependency of BOLD responses in fear conditioning, we collapsed data
from all sessions and used a leave-one-out scheme wherein every third
CS� and every third CS� were separated as test dataset, and the rest of
the data were used as training data for feature selection and support
vector machines or support vector regression (SVR), respectively. The
null performance for this interleaved data scheme was determined em-
pirically (see below). Target variables were the dichotomous contrast
CS�/CS�, the z-transformed aSCR estimate orthogonalized to this con-
trast, and the time effect of CS� versus CS�. To assess the latter, a simple
linear regression model was constructed for
each voxel, with time as predictor and re-
sponses to the CS� as predicted variable (in-
dependently for training and test dataset).
Using parameters from this model, we made a
prediction for CS� responses from time, and
subtracted these from the actual CS� re-
sponses. Those residuals from the CS� re-
sponses were used as data points, and the time
points of the CS� as target variable. Feature
selection was based on the univariate relation
between each voxel and the target variable; the
300 voxels with the highest explained variance
on a univariate basis were extracted (if there
were �300 voxels in a region of interest, all
voxels were used). Three hundred features is an
arbitrary threshold; using other feature num-
bers between 200 and 400 yielded similar results. Feature selection was
based on the training dataset and surplus features were removed both
from training and test dataset. The training data were fed into a linear
support vector classification (C-SVC) or support vector regression (�-
SVR), as implemented in LIBSVM (Chang and Lin, 2001). The ensuing
model was used to predict the test data from the target. The critical
variables were the classification accuracy for SVC and explained variance in
SVR. Because we did not want to make any assumptions about the distribu-
tion of cross-validation performance under the null hypothesis, we used a
randomization test where the target variable was randomly permuted 1000
times within training and test dataset, and the classification procedure re-
peated each time.

For all group analyses, we extracted the performance (i.e., classifica-
tion or explained variance) above chance level and tested this against zero
with one-sample t tests. Region-of-interest analysis was based on the
performance for each individual hemisphere and each participant. Sim-
ilarly, the difference between nucleus groups was tested with paired t
tests. However, responses might be particularly pronounced in a very
small amygdala area, and this might be missed by focusing on regions of
interest, such as the two amygdala nucleus groups. Hence, we applied a
searchlight within the amygdala (Kriegeskorte et al., 2006). For each
voxel within the amygdala, a sphere of 5 mm radius was constructed
around it, and all voxels within this sphere were used for multivariate

analysis. In a searchlight approach, a high number of random permuta-
tions is not feasible, as we were not interested in an exact test and simply
sought to determine the null performance; this was achieved with 100
random permutations. The performance above chance level was mapped
on the center voxel of the sphere. To locate responses across the group,
we extracted the performance peak across the whole amygdala and mean
performance for the two regions of interest. For all analyses, peaks were
evenly distributed between both nucleus groups and mean performance
did not differ between them.

Similar searchlight analysis was applied to the whole field of view with
10 random permutations to approximate the null performance. The re-
sulting images were smoothed with an isotropic 8 mm full width at half
maximum Gaussian filter to accommodate interindividual differences in
anatomy and aligned using DARTEL (Ashburner, 2007), based on seg-
mented (Ashburner and Friston, 2005) high-resolution T1-weighted im-
ages. A second-level test was then performed on these images with a
voxel-level threshold of p � 0.001. As we regard this as an exploratory
approach, we present results at a cluster-level false-defense ratio of q �
0.05. Peak coordinates were then affine transformed to MNI space.

Results
Fear conditioning was successful, as indicated by higher aSCR to
the CS� than to the CS� across the whole experiment (Wilcox-

Figure 3. A, Classification above chance for the contrast CS� and CS� separately for the full
amygdala and both amygdala nucleus groups. B, Same analysis, separated for first and second halves
oftheexperiment.C,Explainedvarianceabovechanceforthedifferenceinlineartimeeffectsbetween
CS� and CS�. D, Explained variance above chance for an association of amygdala neural responses
with aSCR. *p � 0.05, **p � 0.01, ****p � 0.0001.

Figure 4. Brain areas outside of our region of interest that show an association with the target variable, detected by one-sample t tests
of smoothed cross-validation performance in a 5 mm radius searchlight analysis. Results shown here are significant at p � 0.001 at the
voxel level, whole-brain corrected at a false defense ratio of q � 0.05. See Table 3 for additional information. A, B, Pattern separation for
CS�/CS� in right putamen and middle frontal gyrus. C, Linear pattern evolution in left (L) medial temporal gyrus.
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on’s signed rank test, p � 0.05). Participants were at least partially
aware of the association as they rated the US likelihood higher
after a CS� than after a CS� when debriefed post hoc (signed
rank test, p � 0.05).

On a single-subject level, we found a significant difference
(permutation test, p � 0.05) in BOLD pattern in the amygdala
between CS� and CS� in five of six individuals (Table 2). Clas-
sification performance across individuals was above chance at
p � 0.0001 (Fig. 3A). Similar results were found for basolateral
and centro-cortical amygdala analyzed independently (both at p �
0.01 across individuals). There was no difference between the two
nuclear groups, as confirmed with a searchlight approach. Hence,
our analysis was sensitive enough to detect a pattern of BOLD re-
sponses that differentiates between CS� and CS� presentations
within and across both principal amygdala nuclear groups.

To refute a hypothesis that the amygdala is only involved in initial
learning, we repeated our analysis separately for the first and second
halves of the experiment (90 trials each) (Fig. 3B). We found that
classification was better in the second than in the first half of the
experiment ( p � 0.01), consistent with an interpretation that the
amygdala encodes a pattern of response that is different in relation to
a CS� and CS� and where this difference becomes more pro-
nounced with time. This suggests an evolution of the strength of
aversive memory over the timescale of our experiment.

A temporal evolution of a neuronal pattern should be detect-
able (as a first approximation) as a linear change over time, and
the pattern change should distinguish between a CS� and a CS�
as two separate patterns emerge. Hence, we exploited support
vector regression to detect linearly changing patterns where the
temporal profile of this change differs between CS� and CS�
(Fig. 3C). A differential pattern change, consistent with our
predictions, was seen in three of six individuals, as well as
being evident also at the group level ( p � 0.05 level). This effect was
not different between the two principal nuclear groups.

The behavioral expression of fear fluctuates from trial to trial,
as quantified here in aSCR. The expression of fear memory
should be linked to a differential pattern in the amygdala, if in-
deed this pattern reflects the establishment of a stable memory
representation. To address this, we next estimated multivariate
responses associated with aSCR after transformation to ensure
independence from the CS�/CS� contrast (Fig. 3D). We found
a significant association in five of six individuals (group level, p �
0.01), with the same responses being replicated for both nuclear
groups and no difference evident between these loci. The ex-
plained variance was much higher than for the simple contrasts
but variance across individuals was also larger, consistent with
the observations that trial-by-trial estimates of expressed fear are
inherently noisy.

Our results indicate that a fear memory trace is encoded in the
human amygdala as a sparsely distributed stable representation.

This finding might seem inconsistent with a recent primate study
showing that posttraining amygdala lesions do not destroy fear-
potentiated startle in rhesus monkeys (Antoniadis et al., 2007),
suggesting that additional fear memory traces are expressed in
other brain structures. To address this apparent anomaly, we
applied a multivariate searchlight technique (Kriegeskorte et al.,
2006) across the whole-brain volume. This approach is also able
to demonstrate the specificity of our effect. We replicated the
expression of specific CS�/CS� patterns in the amygdala (199
voxel, TPEAK � 13.6, peaks at 28, �8, �14; 33, �18, �11; 41,
�16, �14 mm). Notably, extra-amygdala responses to the CS�/
CS� contrast were seen in cerebellum, putamen, and middle
frontal gyrus (Fig. 4, Table 3). An additional responses cluster in
the left hippocampus and parahippocampal gyrus was too small
to survive correction for multiple comparison (q � 0.09; 133
voxel; TPEAK � 10.0; peaks at �38, �22, �16; �27, �21, �9
mm). These regions represent candidate areas that could support
access to fear memory when an amygdala representation is not
available (Antoniadis et al., 2007, 2009). Note that our limited
field of view may preclude detection of additional areas encoding
such patterns.

Discussion
Our finding that BOLD response patterns in the amygdala of
individual subjects differ for CS� and CS� across 180 CS pre-
sentations challenges the view that within primates the amygdala
only accounts for initial learning (Büchel et al., 1998; Morris et
al., 2001; Morris and Dolan, 2004; Marschner et al., 2008) or is
involved solely in detecting uncertain predictive value (Whalen,
1998). Crucially, CS�/CS� differentiation was better in the sec-
ond half of the experiment, consistent with an expectation that a
fear memory trace evolves over time. Even if a memory trace is
not exclusively stored in the amygdala, as indicated by findings
that amygdala lesions can leave fear memory intact (Antoniadis et
al., 2007, 2009), our data point to the amygdala being a key com-
ponent of a network activated when a CS� is presented, in effect
leading to reactivation of fear memory.

The differential CS�/CS� encoding we describe is significant
for anatomically distinct amygdala subregions, suggesting that
different parts of the amygdala generate this pattern. This fits
both a parallel model of amygdala function, where basolateral
and centromedial nuclei both store the CS�-US association
(Paré et al., 2004; Balleine and Killcross, 2006), and a classic serial
model, where the basolateral amygdala stores the association and
the centromedial nucleus serves as an output relay (LeDoux,
2000; Pape and Pare, 2010). However, our results are a challenge
to a model of fear learning that implicates only neuronal units in
basolateral amygdala (Koo et al., 2004).

Our experiment lasted �45 min. An important question is
how long the human amygdala stores fear memory in the absence

Table 3. Brain areas that consistently exhibit a multivariate BOLD signal pattern across participants, detected by one-sample t test of smoothed cross-validation
performance in a 5 mm radius searchlight analysis

Brain regions Brodmann area of local maxima Hemi-sphere Voxel count Peak voxel t score
Montreal Neurological Institute brain template
coordinates of local maxima

CS� �� CS�
Cerebellum Bilateral 532 25.6 8, �50, �36; 5, �43, �36; �11, �44, �36
Middle frontal gyrus 11 and 47 Right 320 9.52 43, 48, �11; 35, 30, �11; 28, 36, �12
Putamen Right 289 11.69 15, 11, �8; 27, 11, �7

Time effect CS� �� CS�
Cerebellum Left 942 16.58 �5, �37, �32; �7, �56, �39; �12, �73, �36
Middle temporal gyrus 20 & 21 Left 450 31.91 �47, 1, �32; �41, �9, �36; �44, 7, �26

Results are significant at p � 0.001 at the voxel level, whole-brain corrected at the cluster level for a false defense ratio of q � 0.05.
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of CS presentations. This is difficult to assess with noninvasive
methods that require a large number of experimental events. Indeed,
after a significant lapse of time, when a CS–US association is possibly
attenuated, both reinforcement and non-reinforcement are likely to
engage further learning processes. This points to a need to develop
new assessment strategies that are sufficiently sensitive to harvest
data from a very few experimental trials.

Distributed neural representations are key to understanding
phenomena such as encoding of fine visual features or detailed
memory. Our findings highlight the importance of multivariate
fMRI methods in detecting such neural patterns in the acquisi-
tion and storage of memory. This point is reinforced by a surpris-
ing consideration: the majority of previous human fMRI studies
using mass-univariate approaches fail to find stronger BOLD re-
sponses to a predictor of an aversive outcome (CS�) (Table 1).
Our results indicate that these approaches are not sufficiently
sensitive to a neural pattern that encodes fear memory (Reijmers
et al., 2007), and that a rapid habituating neural mass response
previously reported (Büchel et al., 1998; Morris et al., 2001; Mor-
ris and Dolan, 2004; Marschner et al., 2008) might reflect an
entirely different mechanism. While we acknowledge our small
sample size, we believe the strength of our approach is its ability to
show replicability across individuals, which is what one might expect
for a fundamental and highly conserved learning mechanism.

Exploiting multivariate approaches allows a more direct com-
parison between single-unit recordings in rodents and human
brain responses. Our data appear to show similarities and differ-
ences between rodent and primate learning. The demonstration
of a stable and strengthening fear memory trace in the human
amygdala refutes a diametrically opposite assumption regarding
Pavlovian fear conditioning in primates, including humans. In-
stead, we highlight a convergence in neuronal events supporting
Pavlovian learning in human and rodent amygdala. In keeping
with most, but not all (Koo et al., 2004), rodent findings, we
demonstrate involvement of both main amygdala nuclei in fear
learning. In contrast, the likelihood of species differences is sup-
ported by evidence that fear memory in rodents may not involve
structures outside the amygdala. Numerous studies show that
both conditioned freezing (Maren, 1998, 1999; Zimmerman et
al., 2007) and fear-potentiated startle (Campeau and Davis,
1995) are disrupted when the rodent amygdala is removed post-
training. In monkeys, however, fear-potentiated startle is not dis-
rupted with posttraining amygdala lesions (Antoniadis et al.,
2007), although they prevent the establishment of new fear mem-
ory (Antoniadis et al., 2009). Our demonstration of an extra-
amygdala contribution to fear memory is in keeping with the
latter observation. We do note, however, that our standard hu-
man delay conditioning paradigm involves other demands than
those posed in rodent research and that such factors might ex-
plain differences in the neural structures that support fear mem-
ory. To summarize, fear learning in humans rests on a sparse
neural code, a finding that highlights convergence and divergence
with findings from other species.
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