397 research outputs found

    Grey matter involvement by focal cervical spinal cord lesions is associated with progressive multiple sclerosis

    Get PDF
    BACKGROUND: The in vivo relationship of spinal cord lesion features with clinical course and function in multiple sclerosis (MS) is poorly defined. OBJECTIVE: The objective of this paper is to investigate the associations of spinal cord lesion features on MRI with MS subgroup and disability. METHODS: We recruited 120 people: 25 clinically isolated syndrome, 35 relapsing-remitting (RR), 30 secondary progressive (SP), and 30 primary progressive (PP) MS. Disability was measured using the Expanded Disability Status Scale. We performed 3T axial cervical cord MRI, using 3D-fast-field-echo and phase-sensitive-inversion-recovery sequences. Both focal lesions and diffuse abnormalities were recorded. Focal lesions were classified according to the number of white matter (WM) columns involved and whether they extended to grey matter (GM). RESULTS: The proportion of patients with focal lesions involving at least two WM columns and extending to GM was higher in SPMS than in RRMS (p = 0.03) and PPMS (p = 0.015). Diffuse abnormalities were more common in both PPMS and SPMS, compared with RRMS (OR 6.1 (p = 0.002) and 5.7 (p = 0.003), respectively). The number of lesions per patient involving both the lateral column and extending to GM was independently associated with disability (p < 0.001). CONCLUSIONS: More extensive focal cord lesions, extension of lesions to GM, and diffuse abnormalities are associated with progressive MS and disability

    Spatial variability and changes of metabolite concentrations in the cortico-spinal tract in multiple sclerosis using coronal CSI

    Get PDF
    We characterized metabolic changes along the cortico-spinal tract (CST) in multiple sclerosis (MS) patients using a novel application of chemical shift imaging (CSI) and considering the spatial variation of metabolite levels. Thirteen relapsing-remitting (RR) and 13 primary-progressive (PP) MS patients and 16 controls underwent (1)H-MR CSI, which was applied to coronal-oblique scans to sample the entire CST. The concentrations of the main metabolites, i.e., N-acetyl-aspartate, myo-Inositol (Ins), choline containing compounds (Cho) and creatine and phosphocreatine (Cr), were calculated within voxels placed in regions where the CST is located, from cerebral peduncle to corona radiata. Differences in metabolite concentrations between groups and associations between metabolite concentrations and disability were investigated, allowing for the spatial variability of metabolite concentrations in the statistical model. RRMS patients showed higher CST Cho concentration than controls, and higher CST Ins concentration than PPMS, suggesting greater inflammation and glial proliferation in the RR than in the PP course. In RRMS, a significant, albeit modest, association between greater Ins concentration and greater disability suggested that gliosis may be relevant to disability. In PPMS, lower CST Cho and Cr concentrations correlated with greater disability, suggesting that in the progressive stage of the disease, inflammation declines and energy metabolism reduces. Attention to the spatial variation of metabolite concentrations made it possible to detect in patients a greater increase in Cr concentration towards the superior voxels as compared to controls and a stronger association between Cho and disability, suggesting that this step improves our ability to identify clinically relevant metabolic changes

    ADvanced IMage Algebra (ADIMA): a novel method for depicting multiple sclerosis lesion heterogeneity, as demonstrated by quantitative MRI.

    Get PDF
    There are modest correlations between multiple sclerosis (MS) disability and white matter lesion (WML) volumes, as measured by T2-weighted (T2w) magnetic resonance imaging (MRI) scans (T2-WML). This may partly reflect pathological heterogeneity in WMLs, which is not apparent on T2w scans

    MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study

    Get PDF
    BACKGROUND: In patients with chronic spinal cord injury, imaging of the spinal cord and brain above the level of the lesion provides evidence of neural degeneration; however, the spatial and temporal patterns of progression and their relation to clinical outcomes are uncertain. New interventions targeting acute spinal cord injury have entered clinical trials but neuroimaging outcomes as responsive markers of treatment have yet to be established. We aimed to use MRI to assess neuronal degeneration above the level of the lesion after acute spinal cord injury. METHODS: In our prospective longitudinal study, we enrolled patients with acute traumatic spinal cord injury and healthy controls. We assessed patients clinically and by MRI at baseline, 2 months, 6 months, and 12 months, and controls by MRI at the same timepoints. We assessed atrophy in white matter in the cranial corticospinal tracts and grey matter in sensorimotor cortices by tensor-based analyses of T1-weighted MRI data. We used cross-sectional spinal cord area measurements to assess atrophy at cervical level C2/C3. We used myelin-sensitive magnetisation transfer (MT) and longitudinal relaxation rate (R1) maps to assess microstructural changes associated with myelin. We also assessed associations between MRI parameters and clinical improvement. All analyses of brain scans done with statistical parametric mapping were corrected for family-wise error. FINDINGS: Between Sept 17, 2010, and Dec 31, 2012, we recruited 13 patients and 18 controls. In the 12 months from baseline, patients recovered by a mean of 5·27 points per log month (95% CI 1·91–8·63) on the international standards for the neurological classification of spinal cord injury (ISNCSCI) motor score (p=0·002) and by 10·93 points per log month (6·20–15·66) on the spinal cord independence measure (SCIM) score (p<0·0001). Compared with controls, patients showed a rapid decline in cross-sectional spinal cord area (patients declined by 0·46 mm per month compared with a stable cord area in controls; p<0·0001). Patients had faster rates than controls of volume decline of white matter in the cranial corticospinal tracts at the level of the internal capsule (right Z score 5·21, p=0·0081; left Z score 4·12, p=0·0004) and right cerebral peduncle (Z score 3·89, p=0·0302) and of grey matter in the left primary motor cortex (Z score 4·23, p=0·041). Volume changes were paralleled by significant reductions of MT and R1 in the same areas and beyond. Improvements in SCIM scores at 12 months were associated with a reduced loss in cross-sectional spinal cord area over 12 months (Pearson's correlation 0·77, p=0·004) and reduced white matter volume of the corticospinal tracts at the level of the right internal capsule (Z score 4·30, p=0·0021), the left internal capsule (Z score 4·27, p=0·0278), and left cerebral peduncle (Z score 4·05, p=0·0316). Improvements in ISNCSCI motor scores were associated with less white matter volume change encompassing the corticospinal tract at the level of the right internal capsule (Z score 4·01, p<0·0001). INTERPRETATION: Extensive upstream atrophic and microstructural changes of corticospinal axons and sensorimotor cortical areas occur in the first months after spinal cord injury, with faster degenerative changes relating to poorer recovery. Structural volumetric and microstructural MRI protocols remote from the site of spinal cord injury could serve as neuroimaging biomarkers in acute spinal cord injury

    Phenytoin for neuroprotection: Authors' reply

    Get PDF

    Neurofilament results for the phase II neuroprotection study of phenytoin in optic neuritis

    Get PDF
    Background: A randomized trial of phenytoin in acute optic neuritis (ON) demonstrated a 30% reduction in retinal nerve fiber layer (RNFL) loss with phenytoin versus placebo. Here we present the corresponding serum neurofilament analyses. Methods: Eighty-six acute ON cases were randomized to receive phenytoin (4–6 mg/kg/day) or placebo for 3 months, and followed up for 6 months. Serum was collected at baseline, 3 and 6 months for analysis of neurofilament heavy chain (NfH) and neurofilament light chain (NfL). Results: Sixty-four patients had blood sampling. Of these, 58 and 56 were available at 3 months, and 55 and 54 were available at 6 months for NfH and NfL, respectively. There was no significant correlation between serum NfH and NfL at the time points tested. For NfH, the difference in mean placebo – phenytoin was −44 pg/ml at 3 months (P = 0.019) and −27 pg/ml at 6 months (P = 0.234). For NfL, the difference was 1.4 pg/ml at 3 months (P = 0.726) and −1.6 pg/ml at 6 months (P = 0.766). Conclusions: At 3 months, there was a reduction in NfH, but not NFL, in the phenytoin versus placebo group, while differences at 6 months were not statistically significant. This suggests a potential neuroprotective role for phenytoin in acute ON, with the lower NfH at 3 months, when levels secondary to degeneration of the anterior visual pathway are still elevated, but not at 6 months, when levels have normalized

    Strong CD4 T cell responses to Zika virus antigens in a cohort of Dengue virus immune mothers of congenital Zika virus syndrome infants

    Get PDF
    Background: There is an urgent need to understand the complex relationship between cross-reactive anti-viral immunity, disease susceptibility, and severity in the face of differential exposure to related, circulating Flaviviruses. Co-exposure to Dengue virus and Zika virus in Brazil is a case in point. A devastating aspect of the 2015-2016 South American Zika outbreak was the dramatic increase in numbers of infants born with microcephaly to mothers exposed to Zika virus during pregnancy. It has been proposed that this is more likely to ensue from Zika infection in women lacking cross-protective Dengue immunity. In this case series we measure the prevalence of Dengue immunity in a cohort of mothers exposed to Zika virus during pregnancy in the 2015-2016 Zika outbreak that gave birth to an infant affected by microcephaly and explore their adaptive immunity to Zika virus. Results: Fifty women from Sergipe, Brazil who gave birth to infants with microcephaly following Zika virus exposure during the 2015-16 outbreak were tested for serological evidence of Dengue exposure and IFNγ ELISpot spot forming cell (SFC) response to Zika virus. The majority (46/50) demonstrated Dengue immunity. IFNγ ELISpot responses to Zika virus antigens showed the following hierarchy: Env>NS1>NS3>C protein. Twenty T cell epitopes from Zika virus Env were identified. Responses to Zika virus antigens Env and NS1 were polyfunctional with cells making IFNγ, TNFα, IL-4, IL-13, and IL-10. In contrast, responses to NS5 only produced the immune regulatory TGFβ1 cytokine. There were SFC responses against Zika virus Env (1-20) and variant peptide sequences from West Nile virus, Dengue virus 1-4 and Yellow Fever virus. Conclusion: Almost all the women in our study showed serological evidence of Dengue immunity, suggesting that microcephaly can occur in DENV immune mothers. T cell immunity to Zika virus showed a multifunctional response to the antigens Env and NS1 and immune regulatory responses to NS5 and C protein. Our data support an argument that different viral products may skew the antiviral response to a more pro or anti-inflammatory outcome, with an associated impact on immunopathogenesis
    corecore