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Abstract All restoration strategies to mitigate eutro-

phication depend on the success of phosphorus

(P) removal from the water body. Therefore, the

inputs from the watershed and from the enriched

sediments, that were the sink of most P that has been

discharged in the water body, should be controlled. In

sediments, iron (hydr)oxides minerals are potent

repositories of P and the release of P into the water

column may occur upon dissolution of the iron

(hydr)oxides mediated by iron reducing bacteria.

Several species of these bacteria are also known as

electroactive microorganisms and have been recently

identified in lake sediments. This capacity of bacteria

to transfer electrons to electrodes, producing electric-

ity from the oxidation of organic matter, might play a

role on P release in sediments. In the present work it is

discussed the relationship between phosphorus and

iron cycling as well as the application of an electrode

to work as external electron acceptor in sediments, in

order to prevent metal bound P dissolution under

anoxic conditions.

Keywords Bioelectricity � Biogeochemical

processes � Eutrophication � Phosphorus cycling �
Sediment bacterial community

1 Phosphorus and eutrophication

1.1 Impact of eutrophication on water quality

Phosphorus (P) concentrations in soil and freshwater

systems have increased by at least 75 % during the last

decades, and the estimated flow of P from the total

land area to the ocean has risen to 22 million tons per

year (Bennett et al. 2001). This amount exceeds the

world’s annual consumption of P fertilizer, estimated

around 15 million tones (Cordell et al. 2012). While

much of the P accumulated in terrestrial systems

would eventually be available for plant growth, there

is no practical way to recover P lost to aquatic systems.

In aquatic systems too much P and nitrogen result in

eutrophication, which promotes excessive algal and

aquatic plant growth along with undesirable impacts

on biodiversity (the destruction of communities and

elimination of the less competitive), water quality

(production of cyanotoxins), fish stocks and the

recreational value of the environment. Algal blooms
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can include species that release toxins harmful to

humans or animals, while decomposition of algae can

lower dissolved oxygen levels, causing mass mortality

among fish (Carpenter 2005). Eutrophication of sur-

face waters bodies results mainly from anthropogenic

activities occurring in watersheds—extensive fertil-

ization and domestic or industrial sewage discharges

without removal of nutrients (especially P)—and is

one of the most significant and unresolved problems

with respect to water resource protection (Martins

et al. 2008; Conley et al. 2009). Many of the world

largest freshwater lakes are eutrophic, including Lake

Erie (United States), Lake Victoria (Tanzania/

Uganda/Kenya), and Tai Lake (China) (Selman and

Greenhalgh 2009). Moreover, all 217 lakes included in

the International Lake Environment Committee sur-

vey showed an increase in the level of eutrophication

over the past 50 years (UNEP 2012). Eutrophication

of European lakes and reservoirs is a severe problem

and is the main reason why the status of these bodies of

water is deemed unsatisfactory under the rules of the

Water Framework Directive (WFD 2000/60EC; Mar-

tins et al. 2013). Thus, finding a solution to the

problem of eutrophication in developing countries is

urgent because, as time passes, stopping eutrophica-

tion becomes more difficult and expensive every year

(UNEP 2012). As an example, the estimated costs of

the damage caused by freshwater eutrophication in the

UK were around 85–130 million euros per year plus 61

million euros per year of costs incurred in designing of

measures to combat eutrophication (Pretty et al. 2003).

1.2 Sediments as a source of phosphorus

Before the decade of 1980–1990, the reason for

eutrophication was considered to be the P rich

municipal wastewater discharge into surface waters.

Therefore, billions of euros were invested in improv-

ing wastewater treatment and other pollution-combat-

ing measures with the expectation that these measures

would solve the eutrophication problem (Søndergaard

et al. 2007). Despite the instituted control measures,

eutrophication remains a major problem, either

because external loading was not reduced sufficiently,

or because chemical and/or biological processes in

affected lakes delayed or prevented recovery

(Søndergaard et al. 2003, 2007). In fact, it has become

recognized that eutrophication is not only caused by

agricultural fertilization, but also by decades of P

accumulation in aquatic sediments, one of the main

sources of P in the water column (Martins et al. 2008;

UNEP 2012). A recent examination of long-term data

collected from 35 lakes in Europe and North America

led to the conclusion that P release from the lake

sediments continues typically for 10–15 years after

reduction of P loading to the lakes (Jeppesen et al.

2005), but in some lakes may last for more than

20 years (Søndergaard et al. 2003).

In most lakes, the major P input is of organic origin

and is the result of lake primary production and

catchment (Pettersson 2001). Particulate organic P

that reaches sediments is mineralized and the released

phosphate ions are easily adsorbed by minerals [as for

example, iron (Fe) and aluminium (Al) oxides, clay

minerals with surficial Fe and Al (hydr)oxides, and

possibly also manganese (Mn) oxides] or stored by

microorganisms (Gonsiorczyk et al. 1998). As an

example, Table 1 presents P distribution in sediments

from two Azorean lakes with distinct trophic states. In

the sediment of the oligotrophic lake, P was mostly

refractory/residual, whereas in the eutrophic lake,

64 % of the total P was organically bound and metal

oxide-bound in the sediment (Ribeiro et al. 2008;

Martins et al. 2008).

Sediments can act as an internal source of P to the

overlying water. The Fe (hydr)oxide minerals are

potent repositories of phosphate, and the release of

phosphate into pore water may occur upon dissolution

of the Fe (hydr)oxides mediated by a number of biotic

processes (Lentini et al. 2012). Several processes have

been proposed to explain this phenomenon. The

pioneering work of Einsele (1936), later adapted by

Mortimer (1941, 1942), focused on the pool of P

bound to Fe(III) oxides and proposed that P is released

Table 1 Typical values for P chemical forms in lake

sediments

P form Lake Fogo

(oligotrophic

lake)/% of

total P

Lake Verde

(eutrophic

lake)/%

of total P

Labile P 2 11

Metal bound P 19 36

Organic P 15 28

Ca-bound P 16 9

Refractory/residual P 48 17
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from sediments when the insoluble Fe(III) oxides are

reduced under anoxic conditions. However, no exper-

imental evidence was presented in support of this

proposal (Golterman 2001). Several later studies

suggested that this process is more complex than

previously described, involving the participation of

several bacterial groups (Khoshmanesh et al. 2002;

Azzoni et al. 2005; Hupfer and Lewandowski 2008).

Therefore, the eutrophication problem is yet to be

solved, and because a good management of lake

watershed will not be enough (the so-called external

measures) to revert the eutrophication state in many

lakes, solutions in the water body itself (internal

measures) are in much need, but are not really

available.

2 Sediment biogeochemical processes

2.1 General description

Sediments as repositories of the overlying water body

(for example, ocean, lake, river or reservoir) are

composed of organic and inorganic materials (Huettel

et al. 2003; Chen and White 2004) and shelter a complex

microbial ecosystem that thrives on several different

electron donors and acceptors (Martins et al. 2011,

2012). Microorganisms in sediments mediate several

processes in the biogeochemical cycles of carbon,

nutrients, metals, and sulphur (Nealson 1997; Wobus

et al. 2003; Raghoebarsing et al. 2006). Figure 1 shows

a simplified scheme of the microbial processes occur-

ring in sediments and Fig. 2 depicts the respective

relevant biological reactions. The oxidation of organic

matter settled from the water column into sediments is

coupled to a succession of increasingly less energeti-

cally-favourable terminal electron acceptors; that is, O2,

NO3
-, Mn(IV), Fe(III), and SO4

-2, resulting in a vertical

pattern of redox stratification (Thomsen et al. 2004;

Canavan et al. 2006; Himmelheber et al. 2009).

The oxygen reduction zone in sediments can extend

from millimetres to centimetres depending on carbon

consumption (Himmelheber et al. 2008). In the top

sediment layers, ammonium derived from the ammo-

nification of organic matter or dissimilatory nitrate

reduction, is autotrophically oxidized in the presence

of oxygen to nitrate via nitrite, in a two step-process

called nitrification (Figs. 1, 2). Ammonium oxidizing

bacteria (AOB) and nitrite oxidizing bacteria (NOB),

collectively known as nitrifiers, compete with carbon

oxidizers in top sediment layers for oxygen (Altmann

et al. 2004; Himmelheber et al. 2009). Nitrate resulting

from the activity of nitrifiers diffuses into the nitrate

reduction zone and is used as terminal electron

acceptor in the oxidation of organic carbon by

facultative heterotrophic bacteria, under suboxic con-

ditions (Fig. 1); that is oxygen concentrations below

2 mg L-1 (Fennel et al. 2009). This process called

denitrification occurs in several steps with the forma-

tion of distinct intermediates (NO2
-, NO, N2O), being

Fig. 1 Simplified

hypothetical diagram of the

biogeochemical processes

carried out by bacteria in

sediments (adapted from

Nealson 1997). AOB

ammonium oxidizing

bacteria, NOB nitrite

oxidizing bacteria, DNB

denitrifying bacteria, MRB

manganese reducing

bacteria, IRB iron reducing

bacteria, SRB sulphate

reducing bacteria, MGB

methanogenic bacteria
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nitrogen gas the end product (Fig. 2). As an alterna-

tive, the autotrophic nitrogen removal over nitrite

done by anaerobic AOB, designated as anammox

bacteria (Figs. 1, 2), might account for at least 50 % of

N2 losses from sediments, which have previously been

entirely attributed to denitrifying bacteria (Thamdrup

and Dalsgaard 2002; Dalsgaard et al. 2005). Deeper in

sediments, Fe(III) and Mn(IV) oxides present in the

metal reduction zone are reduced by iron reducing

bacteria (IRB) and manganese reducing bacteria

(MRB), using the remaining organic compounds or

hydrogen as electron donors, as presented in Fig. 2

(Lovley and Phillips 1987; Nealson 1997; Lovley et al.

2004). Below the zone of metal reduction, the

presence of sulphide in pore water is the result of the

reduction of sulphate by sulphate reducing bacteria

(SRB), as depicted in Fig. 1 (Nealson 1997). SRB

oxidize lactate and ethanol to acetate, carbon dioxide

and hydrogen (Muyzer and Stams 2008). Hydrogen is

efficiently removed by hydrogen-consuming

methanogens that grow syntrophically with SRB

(Bryant et al. 1977; Muyzer and Stams 2008).

Sulphate reduction can account for more than 50 %

of the organic carbon mineralization in marine sedi-

ments (Muyzer and Stams 2008). Finally, the organic

matter turnover ends with methanogens that produce

CH4 mostly by reduction of the methyl group of

acetate or by the reduction of CO2 (Ferry and Lessner

2008). Nevertheless, the diagrammatic representation

present in Fig. 1 is an oversimplification because of

the existence of overlaps and microniches between

different redox zones (Martins et al. 2011). This

overlap is the result of resuspension and bioturbation

as well as the formation of gas bubbles, feeding tubes

and burrows from benthic fauna, resulting in a more

rapid decomposition of organic matter than simple

unidirectional redox changes (Kemp et al. 1990;

Stockdale et al. 2009; Martins et al. 2011).

Through microbial metabolism based on redox

reactions and syntrophic interactions, the manganese,

Fig. 2 Main

biogeochemical reactions

that occur in sediments
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iron, and sulfur cycles can influence nitrogen, carbon

and P cycling and indirectly regulate nutrient avail-

ability for net primary production (Azzoni et al. 2005;

Burgin et al. 2011). In the next section, it is discussed

the role of Fe(III) reduction on the release of P from

sediments.

2.2 Iron reduction and phosphorus cycling

Given the ubiquity of Fe (hydr)oxides within soils and

sedimentary systems, microbial Fe(III) reduction can

have a strong impact on carbon cycling and degrada-

tion. In fact, microbial Fe(III) reduction might be

responsible for 50 % of carbon oxidation in non-

sulfidogenic sediments (Canfield et al. 1993; Thamd-

rup 2000). The biotic mechanisms of Fe(III) reduction

are primarily attributed to either an indirect conse-

quence of fermentation or microbial respiration, in

which organisms couple the oxidation of carbon or

molecular hydrogen to the reduction of Fe(III) for

energy conservation (dissimilatory reduction by IRB).

Particularly, in freshwater lakes with low sulphate

concentrations, microbial Fe(III) reduction is an

important process in the anaerobic degradation of

organic matter (Thamdrup 2000; Lovley et al. 2004).

Besides, IRB are also involved in the bioremediation

of subsurface environments contaminated with heavy

metals (Petrie et al. 2003) as well as harvesting

electricity from aquatic sediments (Lovley et al. 2004;

Martins et al. 2010, 2014).

Regarding the processes contributing to P dissolution

in the pore water, one of the most important is the

dissimilatory Fe(III) (hydr)oxides reduction (Einsele

1936; Mortimer 1941, 1942; Azzoni et al. 2005). It was

already shown a direct relationship between redox

conditions and the release of P from sediments (Rozan

et al. 2002; Gächter and Müller 2003). Rozan et al.

(2002) followed monthly the concentration of both solid

and soluble P in sediments from a shallow coastal bay,

and reported a marked decrease in the reactive solid P

and a sharp increase in soluble P in the overlying water,

as the conditions became more reducing throughout the

summer months. Besides, it was observed a decrease in

the amorphous Fe(III) and total Fe(III) (hydr)oxides

pools and an increase in solid iron sulphide (FeS) and

pyrite (FeS2) (Rozan et al. 2002; Chacon et al. 2006). In

sulphate-rich sediments, hydrogen sulphide, resulting

from sulphate reduction by SRB, reduces Fe(III) and the

released Fe(II) precipitates as insoluble FeS that adsorb

P poorly at neutral pH (Nielsen et al. 2010). As a

consequence, the sediment binding capacity towards P

is reduced and the continuous release of phosphate from

sediments may enhance the trophic status of water

bodies (Holmer and Storkholm 2001; Rozan et al. 2002;

Azzoni et al. 2005).

2.3 Phylogeny and abundance of IRB

Fe(III) reduction is widespread in nature being IRB

represented by many different types of Bacteria and

Archaea that are phylogenetically and physiologically

diverse (Lovley et al. 2004; Lin et al. 2007; Li et al.

2011). However, most of current knowledge about the

mechanisms and ecological importance of microbial

Fe(III) reduction stems from studies focusing on

Geobacter and Shewanella genera (Klueglein et al.

2013). Members of the Geobacteraceae family grow

using acetate or hydrogen as an electron donor and ferric

pyrophosphate (Fe-PPi), ferric oxyhydrate (amorphous

Fe(III) oxyhydroxide), ferric citrate, elemental sulfur, or

fumarate as the sole electron acceptor (Caccavo et al.

1994; Holmes et al. 2004). Geobacter metallireducens,

belonging to the Geobacteraceae family in the Delta-

subdivision of Proteobacteria, was the first organism

found to conserve energy from the complete oxidation

of organic compounds with Fe(III) as the sole electron

acceptor, in freshwater sediments (Lovley et al. 1987;

Lovley and Phillips 1988). Shewanella species in the

Gamma-subdivision of Proteobacteria are also able to

reduce solid Fe(III) and are found in very diverse

environments including sediments (Lovley et al. 2004).

Another IRB described in the literature is Geothrix

fermentans (Coates et al. 1999), which can also reduce

Fe(III) under anoxic conditions. It belongs to the

Acidobacteria phylum, of which only a few strains

have been cultured so far including Holophaga foetida

(Anderson et al. 2012).

Members of the Geobacteraceae family are often the

most abundant microorganisms in aquatic sediments rich

in Fe(III) (hydr)oxides (Stein et al. 2001). qPCR studies

targeting members of the family Geobacteraceae

(1.80 9 107 cells cm-3, assuming two gene copies per

cell), Anaeromyxobacter spp. (6.39 9 106 cells cm-3,

assuming two gene copies per cell) and Shewanella spp.

(1.25 9 105 cells cm-3, assuming two gene copies per

cell) have shown that IRB represent about 0.2–8.7 % of

total bacteria in freshwater sediments (Bedard et al. 2007;

Himmelheber et al. 2009; Martins et al. 2011).
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3 Electricity generation in a sediment microbial

fuel cell

Electricity can be harvested from organic-rich aquatic

sediments by electrochemically active microorganisms

growing on the surface of an anode. This new application

of the microbial fuel cell technology, designated as

sediment microbial fuel cell (SMFC), consists of an

anode embedded in the anoxic sediment and a cathode

suspended in the aerobic water column connected by a

resistor (Reimers et al. 2001; Martins et al. 2010).

Electricity is generated by the oxidation of organic matter

by microorganisms naturally present in the sediments.

The oxidation of organic matter produces electrons that

are captured at the anode and transferred through the

external circuit to the cathode, where oxygen is typically

reduced to form water. The first SMFC described in

literature was operated in marine sediments due to the

better ion conductivity between electrodes in saline

environments (Tender et al. 2002; Bond et al. 2002).

Later sediments from rivers and lakes were also used

(Venkata Mohan et al. 2008; Martins et al. 2010, 2014).

The main application of SMFCs is as long-term power

sources for autonomous sensors and communication

devices, because they can provide continuous low-level

power and do not require maintenance or replacement

(Tender et al. 2008; Donovan et al. 2013). The main

advantage of using SMFCs is that the power generation is

not limited by the fuel supply because the organic matter

in the sediments is renewable. Also, the electrodes of

SMFCs are inert materials, therefore the duration of

power generation is not limited by the materials of

construction (Donovan et al. 2013).

Nevertheless, due to various limiting factors such as

substrate mass transfer limitation and low electric

conductivity especially in freshwater, internal resistances

in SMFC are in generally higher than those in a chamber

MFC (Zhou et al. 2014; He et al. 2007). Consequently, a

lower voltage and power output is obtained from a

SMFC. Several attempts have been made to improve

SMFC performance namely optimizing the external

resistance (Song et al. 2010), improving the sediment

conductivity (Babu and Mohan 2012), amendment of

colloidal iron oxyhydroxide (Zhou et al. 2014), modify-

ing the electrode materials (Fu et al. 2014), and changing

the electrode configuration and assembly (Martins et al.

2014; An et al. 2013). In addition, the supply of organic

matter, such as glucose, plant rhizodeposits (De Scham-

phelaire et al. 2010) or biomass likes chitin or cellulose

(He et al. 2007; Rezaei et al. 2008), has also been shown

to increase power production.

Up to date, current output values of freshwater

SMFC are not as high as those of marine SMFC due to

their low conductivity (Song et al. 2012). In fact, the

maximum power density values obtained in SMFCs

with electrodes of felt graphite (Hong et al. 2009),

carbon paper (Martins et al. 2010) and stainless steel

scourer (Martins et al. 2014) are only around 4, 1 and

0.13 mW m-2, respectively. The maximum power

density of SMFCs can be significantly increased by

using a rotating cathode (49 mW m-2; He et al. 2007)

or biocathode (123 mW m-2; De Schamphelaire et al.

2010). Another important issue is the anode-embedding

depth, since as it increases, more electrons and a more

negative anode potential are produced, i.e., the anode

environment is thermodynamically and kinetically

favorable to electroactive bacteria that can perform

direct and/or indirect transfer electrons to electrodes.

Therefore, the anode-embedding depth should be

considered an important parameter that determines the

performance of SMFC (An et al. 2013). Also a multi-

electrode approach could be adopted to minimize scale

up losses from anode size (Hsu et al. 2013).

In sediments, the most well known electrochemically

active bacteria that can transfer electrons directly from a

carbon source to an anode, are Shewanella putrefaciens,

a Gamma-Proteobacterium, Geobacter sulfurreducens,

G. metallireducens and Desulfuromonas acetoxidans,

all Delta-Proteobacteria, and Rhodoferax ferriredu-

cens, a Beta-Proteobacterium (Logan et al. 2005;

Rabaey et al. 2005; Du et al. 2007). Microbial

communities associated to SMFC anodes are enriched

in Delta-Proteobacteria (Bond et al. 2002; Cummings

et al. 2003; Holmes et al. 2004; Reimers et al. 2006).

The predominance of certain groups of bacteria is

dependent upon the environment: Desulfuromonas

species are more abundant in marine sediments, while

in freshwater sediments Geobacter species prevail

(Holmes et al. 2004).

4 New strategy for phosphorus immobilization

in sediments

4.1 The concept

As mentioned above, the capacity of some metal

reducing microorganisms (e.g. S. putrefaciens and G.
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sulfurreducens) to transfer electrons directly to an

anode, thus generating electricity, might contribute to

lake valorisation through the production of electricity

(Martins et al. 2010). In addition, Martins et al. (2014)

showed that in sediments impacted by the operation of

SMFC (along 50 days), the metal bound P fraction

increased 3 % and the organic P faction decreased

around 10 %. These results suggested that electrodes

could compete with the in situ available electron

acceptors. Thus, to prevent metal bound P dissolution

under anoxic conditions, an electrode (or electrodes)

needs to be inserted into sediments, in order to divert

the flux of electrons devoted to Fe(III) (hydr)oxides to

the surface of a anode, thereby preventing the

dissolution of phosphate adsorbed by the Fe(III)

(hydr)oxides. This hypothesis seems plausible; how-

ever, its implementation could be challenging (Fig. 3).

In addition, Fischer et al. (2011) have demon-

strated the feasibility of reducing FePO4 in the

cathodic chamber of a microbial fuel cell (MFC)

with the reducing power (electrons) and protons

generated during bacterial respiration. The opposite

reaction, i.e. the oxidation of Fe(II) compounds

forming particulate Fe(III)–P compounds, would be

expected to occur in the anodic chamber. Moreover,

chemisorption of phosphate to the Fe(III) (hydr)o-

xides occurs at neutral pH and redox potential

higher than 200 mV (Wetzel 1983); thus, it should

be possible to immobilize P into sediments control-

ling electrode potential.

By incorporating these findings into a new

concept of lake management, the operation of a

SMFC could contribute to an ecotechnological

solution to phosphorus retention in lake sediments,

as described in Fig. 3. However, this hypothesis has

not yet been fully explored and to develop the

proposed remediation technology, it is necessary to

demonstrate that the electrons generated in the

respiratory activity of appropriate bacteria can be

diverted from Fe(III) (hydr)oxides to an artificial

electrode as terminal electron acceptor when both

are available.

Fig. 3 Hypothetical bioremediation strategy carried out by a SMFC; a reduction of iron (hydro)oxides by IRB and consequent release

of P to the water column; b adhesion of IRB to the electrode preventing the reduction of iron (hydro)oxides
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4.2 Implementation challenges

The rate and extent of microbial Fe(III) reduction is

governed by the surface area and site concentration of

the solid phase (Roden and Zachara 1996). In

sediments, fine-grained minerals, such as Fe(III)

oxides, and clay minerals with surficial Fe(III)

(hydr)oxides have an enormous surface area and

adsorb P efficiently on their surfaces (Lehtoranta

2004). To prevent P dissolution under anoxic condi-

tions, an electrode has to compete with these fine-

grained constituents of sediments as a terminal

electron acceptor, meaning that electrodes with huge

surface areas have to be devised.

Different electrode materials vary in their physical

and chemical properties (e.g., surface area, electric

conductivity, and chemical stability), thus, they also

vary in their impact on microbial attachment, elec-

tron transfer, electrode resistance and the rate of

electrode surface reaction. A good anode material

should have (a) good electrical conductivity and low

resistance, (b) strong biocompatibility, (c) chemical

stability and anti-corrosion capacity, (d) large surface

area, and (e) appropriate mechanical strength and

toughness (Logan et al. 2006). Currently, the most

versatile material is carbon, since it is available as

compact material (graphite), in the form of plates,

tubes or granules (filters, cloth, paper, fibers and

foams), and as brushes and glassy carbon (Logan

et al. 2006). Higher surface areas are achieved by the

use of compact materials like reticulated vitreous

carbon that are available in different porosities, and

can be used in layers (Logan 2008). For example, a

smaller brush anode in a cube-type MFC produced

the highest power density yet achieved for an air–

cathode MFC, 2,400 mW m-2 (73 W m-3; Logan

et al. 2007). In addition, the modification of graphite

by adsorption of anthraquinone-1,6-disulfonic acid

(AQDS) or 1,4-naphthoquinone (NQ), or a graphite–

ceramic composite containing Mn2? and Ni2?, as

well as the electrolytic deposition of Fe/ferric oxide

were already used as strategies to increase the

performance of the electrodes (Lowy et al. 2006; Fu

et al. 2014).

Besides achieving the intended ecosystem remedi-

ation, it should be possible to generate some electric-

ity. Up to now, the use of lake sediments for electricity

generation has been explored in only a few studies.

Martins et al. (2010) have shown that using Lake

Furnas sediments, a SMFC can generate around

6 W m-2 of electrode and per m3 of sediment. Thus,

if the proposed ecotechnology were applied, it would

be theoretically possible to generate 2 MW, assuming

linear extrapolation to all parts of Lake Furnas. This is

an indication of future prospects, but significant

obstacles exist to achieve them.

5 Conclusions and research needs

Sediments act as an internal source of P to the

overlying water, thus contributing to eutrophication.

Several processes have been proposed to explain this

phenomenon, being the Fe(III) reduction promoted by

IRB one of the most important. In addition, IRB are

also known to directly transfer electrons to an anode,

generating electricity. Therefore, the introduction of

electrodes in the sediment might contribute to divert-

ing the flux of electrons devoted for Fe(III) reduction

to the surface of a anode, thereby preventing the

dissolution of phosphate. This approach could con-

tribute to a new ecotechnological solution to P

retention in lake sediments.

In that regard, future research should focus on the

development of electrodes with huge surface areas to

compete with natural iron (hydr)oxides as well as on

the quantification of rates and designing experiments

to understand the importance of microbial mediated

pathways in P release from sediments. Additionally,

researchers need to consider how biogeochemical

cycles are likely to be affected by any newly

discovered dissimilatory processes. Some of these

novel microbial processes may prove to be tremen-

dously valuable for the designing of new ecotechnol-

ogies for ecosystems restoration and valorisation.
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