1,060 research outputs found
Joint PDF modelling of turbulent flow and dispersion in an urban street canyon
The joint probability density function (PDF) of turbulent velocity and
concentration of a passive scalar in an urban street canyon is computed using a
newly developed particle-in-cell Monte Carlo method. Compared to moment
closures, the PDF methodology provides the full one-point one-time PDF of the
underlying fields containing all higher moments and correlations. The
small-scale mixing of the scalar released from a concentrated source at the
street level is modelled by the interaction by exchange with the conditional
mean (IECM) model, with a micro-mixing time scale designed for geometrically
complex settings. The boundary layer along no-slip walls (building sides and
tops) is fully resolved using an elliptic relaxation technique, which captures
the high anisotropy and inhomogeneity of the Reynolds stress tensor in these
regions. A less computationally intensive technique based on wall functions to
represent boundary layers and its effect on the solution are also explored. The
calculated statistics are compared to experimental data and large-eddy
simulation. The present work can be considered as the first example of
computation of the full joint PDF of velocity and a transported passive scalar
in an urban setting. The methodology proves successful in providing high level
statistical information on the turbulence and pollutant concentration fields in
complex urban scenarios.Comment: Accepted in Boundary-Layer Meteorology, Feb. 19, 200
Wall roughness induces asymptotic ultimate turbulence
Turbulence is omnipresent in Nature and technology, governing the transport
of heat, mass, and momentum on multiple scales. For real-world applications of
wall-bounded turbulence, the underlying surfaces are virtually always rough;
yet characterizing and understanding the effects of wall roughness for
turbulence remains a challenge, especially for rotating and thermally driven
turbulence. By combining extensive experiments and numerical simulations, here,
taking as example the paradigmatic Taylor-Couette system (the closed flow
between two independently rotating coaxial cylinders), we show how wall
roughness greatly enhances the overall transport properties and the
corresponding scaling exponents. If only one of the walls is rough, we reveal
that the bulk velocity is slaved to the rough side, due to the much stronger
coupling to that wall by the detaching flow structures. If both walls are
rough, the viscosity dependence is thoroughly eliminated in the boundary layers
and we thus achieve asymptotic ultimate turbulence, i.e. the upper limit of
transport, whose existence had been predicted by Robert Kraichnan in 1962
(Phys. Fluids {\bf 5}, 1374 (1962)) and in which the scalings laws can be
extrapolated to arbitrarily large Reynolds numbers
Discrete Information from CHL Black Holes
AdS_2/CFT_1 correspondence predicts that the logarithm of a Z_N twisted index
over states carrying a fixed set of charges grows as 1/N times the entropy of
the black hole carrying the same set of charges. In this paper we verify this
explicitly by calculating the microscopic Z_N twisted index for a class of
states in the CHL models. This demonstrates that black holes carry more
information about the microstates than just the total degeneracy.Comment: LaTeX file, 24 pages; v2: references adde
A Twist in the Dyon Partition Function
In four dimensional string theories with N=4 and N=8 supersymmetries one can
often define twisted index in a subspace of the moduli space which captures
additional information on the partition function than the ones contained in the
usual helicity trace index. We compute several such indices in type IIB string
theory on K3 x T^2 and T^6, and find that they share many properties with the
usual helicity trace index that captures the spectrum of quarter BPS states in
N=4 supersymmetric string theories. In particular the partition function is a
modular form of a subgroup of Sp(2,Z) and the jumps across the walls of
marginal stability are controlled by the residues at the poles of the partition
function. However for large charges the logarithm of this index grows as 1/n
times the entropy of a black hole carrying the same charges where n is the
order of the symmetry generator that is used to define the twisted index. We
provide a macroscopic explanation of this phenomenon using quantum entropy
function formalism. The leading saddle point corresponding to the attractor
geometry fails to contribute to the twisted index, but a Z_n orbifold of the
attractor geometry produces the desired contribution.Comment: LaTeX file, 35 pages; v2: references adde
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Recommended from our members
The sensitivity of the tropical circulation and Maritime Continent precipitation to climate model resolution
The dependence of the annual mean tropical precipitation on horizontal resolution is investigated in the atmospheric version of the Hadley Centre General Environment Model (HadGEM1). Reducing the grid spacing from about 350 km to 110 km improves the precipitation distribution in most of the tropics. In particular, characteristic dry biases over South and Southeast Asia including the Maritime Continent as well as wet biases over the western tropical oceans are
reduced. The annual-mean precipitation bias is reduced by about one third over the Maritime Continent and the neighbouring ocean basins associated with it via the Walker circulation. Sensitivity experiments show that much of the improvement with resolution in the Maritime Continent region is due to the specification of better resolved surface boundary conditions (land fraction, soil and vegetation parameters) at the higher resolution.
It is shown that in particular the formulation of the coastal tiling scheme may cause resolution sensitivity of the mean simulated climate. The improvement in the tropical mean precipitation in this region is not primarily associated with the better representation of orography at
the higher resolution, nor with changes in the eddy transport of moisture. Sizeable sensitivity to changes in
the surface fields may be one of the reasons for the large variation of the mean tropical precipitation distribution
seen across climate models
Weyl Double Copy for Gravitational Waves
We establish the status of the Weyl double copy relation for radiative solutions of the vacuum Einstein equations. We show that all type
N
vacuum solutions, which describe the radiation region of isolated gravitational systems with appropriate falloff for the matter fields, admit a degenerate Maxwell field that squares to give the Weyl tensor. The converse statement also holds, i.e., if there exists a degenerate Maxwell field on a curved background, then the background is type
N
. This relation defines a scalar that satisfies the wave equation on the background. We show that for nontwisting radiative solutions, the Maxwell field and the scalar also satisfy the Maxwell equation and the wave equation on Minkowski spacetime. Hence, nontwisting solutions have a straightforward double copy interpretation
Scaphoid Waist Internal Fixation for Fractures Trial (SWIFFT) protocol : a pragmatic multi-centre randomised controlled trial of cast treatment versus surgical fixation for the treatment of bi-cortical, minimally displaced fractures of the scaphoid waist in adults
BACKGROUND: A scaphoid fracture is the most common type of carpal fracture affecting young active people. The optimal management of this fracture is uncertain. When treated with a cast, 88 to 90 % of these fractures unite; however, for the remaining 10-12 % the non-union almost invariably leads to arthritis. The alternative is surgery to fix the scaphoid with a screw at the outset. METHODS/DESIGN: We will conduct a randomised controlled trial (RCT) of 438 adult patients with a "clear" and "bicortical" scaphoid waist fracture on plain radiographs to evaluate the clinical effectiveness and cost-effectiveness of plaster cast treatment (with fixation of those that fail to unite) versus early surgical fixation. The plaster cast treatment will be immobilisation in a below elbow cast for 6 to 10 weeks followed by mobilisation. If non-union is confirmed on plain radiographs and/or Computerised Tomogram at 6 to 12 weeks, then urgent surgical fixation will be performed. This is being compared with immediate surgical fixation with surgeons using their preferred technique and implant. These treatments will be undertaken in trauma units across the United Kingdom. The primary outcome and end-point will be the Patient Rated Wrist Evaluation (a patient self-reported assessment of wrist pain and function) at 52 weeks and also measured at 6, 12, 26 weeks and 5 years. Secondary outcomes include an assessment of radiological union of the fracture; quality of life; recovery of wrist range and strength; and complications. We will also qualitatively investigate patient experiences of their treatment. DISCUSSION: Scaphoid fractures are an important public health problem as they predominantly affect young active individuals in the more productive working years of their lives. Non-union, if untreated, can lead to arthritis which can disable patients at a very young age. There is a rapidly increasing trend for immediate surgical fixation of these fractures but there is insufficient evidence from existing RCTs to support this. The SWIFFT Trial is a rigorously designed and adequately powered study which aims to contribute to the evidence-base to inform clinical decisions for the treatment of this common fracture in adults. TRIAL REGISTRATION: The trial is registered with the International Standard Randomised Controlled Trial Register ( ISRCTN67901257 ). Date registration assigned was 13/02/2013
- …
