89 research outputs found

    Recruitment of a penicillin-binding protein gene from Neisseria flavescens during the emergence of penicillin resistance in Neisseria meningitidis

    No full text
    Non-beta-lactamase-producing, penicillin-resistant strains of Neisseria meningitidis produce altered forms of penicillin-binding protein 2 that have decreased affinity for penicillin. The sequence of the penicillin-binding protein 2 gene (penA) from a penicillin-resistant strain of N. meningitidis was compared to the sequence of the same gene from penicillin-sensitive strains and from penicillin-sensitive and penicillin-resistant strains of Neisseria gonorrhoeae. The penA genes from penicillin-sensitive strains of N. gonorrhoeae and N. meningitidis were 98% identical. The gene from the penicillin-resistant strain of N. meningitidis consisted of regions that were almost identical to the corresponding regions in the penicillin-sensitive strains (less than 0.2% divergence) and two regions that were very different from them (approximately 22% divergence). The two blocks of altered sequence have arisen by the replacement of meningococcal sequences with the corresponding regions from the penA gene of Neisseria flavescens and result in an altered form of penicillin-binding protein 2 that contains 44 amino acid substitutions and 1 amino acid insertion compared to penicillin-binding protein 2 of penicillin-sensitive strains of N. meningitidis. A similar introduction of part of the penA gene of N. flavescens, or a very similar commensal Neisseria species, appears to have occurred independently during the development of altered penA genes in non-beta-lactamase-producing penicillin-resistant strains of N. gonorrhoeae

    There is no market for new antibiotics: This allows an open approach to research and development

    Get PDF
    There is an increasingly urgent need for new antibiotics, yet there is a significant and persistent economic problem when it comes to developing such medicines. The problem stems from the perceived need for a 'market' to drive commercial antibiotic development. In this article, we explore abandoning the market as a prerequisite for successful antibiotic research and development. Once one stops trying to fix a market model that has stopped functioning, one is free to carry out research and development (R&D) in ways that are more openly collaborative, a mechanism that has been demonstrably effective for the R&D underpinning the response to the COVID pandemic. New 'open source' research models have great potential for the development of medicines for areas of public health where the traditional profit-driven model struggles to deliver. New financial initiatives, including major push/pull incentives, aimed at fixing the broken antibiotics market provide one possible means for funding an openly collaborative approach to drug development. We argue that now is therefore the time to evaluate, at scale, whether such methods can deliver new medicines through to patients, in a timely manner

    To Push or To Pull? In a Post-COVID World, Supporting and Incentivizing Antimicrobial Drug Development Must Become a Governmental Priority

    Get PDF
    This is the final version. Available on open access from the American Chemical Society via the DOI in this recorddata availability: This study did not generate any new data. The data on COVID-19 deaths used in the publication are publicly available at https://www.worldometers.info/coronavirus/ (access date 15th December 2020).The COVID-19 pandemic has refocused attention worldwide on the dangers of infectious diseases, in terms of both global health and the effects on the world economy. Even in high income countries, health systems have been found wanting in dealing with the new infectious agent. However, the even greater long-term danger of antimicrobial resistance in pathogenic bacteria and fungi is still under-appreciated, especially among the general public. Although antimicrobial drug development faces significant scientific challenges, the gravest challenge at the moment appears to be economic, where the lack of a viable market has led to a collapse in drug development pipelines. There is therefore a critical need for governments across the world to further incentivize the development of antimicrobials. Most incentive strategies over the past decade have focused on so-called “push” incentives that bridge the costs of antimicrobial research and development, but these have been insufficient for reviving the pipeline. In this Perspective, we analyze the current incentive strategies in place for antimicrobial drug development, and focus on “pull” incentives, which instead aim to improve revenue generation and thereby resolve the antimicrobial market failure challenge. We further analyze these incentives in a broader “One Health” context and stress the importance of developing and enforcing strict protocols to ensure appropriate manufacturing practices and responsible use. Our analysis reiterates the importance of international cooperation, coordination across antimicrobial research, and sustained funding in tackling this significant global challenge. A failure to invest wisely and continuously to incentivize antimicrobial pipelines will have catastrophic consequences for global health and wellbeing in the years to come.Wellcome TrustGCRF One Health Poultry HubMedical Research Council (MRC

    Inhibition of D-Ala:D-Ala ligase through a phosphorylated form of the antibiotic D-cycloserine

    Get PDF
    D-cycloserine is an antibiotic which targets sequential bacterial cell wall peptidoglycan biosynthesis enzymes: alanine racemase and D-alanine:D-alanine ligase. By a combination of structural, chemical and mechanistic studies here we show that the inhibition of D-alanine:D-alanine ligase by the antibiotic D-cycloserine proceeds via a distinct phosphorylated form of the drug. This mechanistic insight reveals a bimodal mechanism of action for a single antibiotic on different enzyme targets and has significance for the design of future inhibitor molecules based on this chemical structure

    Correction: Metal complexes as a promising source for new antibiotics

    Get PDF
    Correction for ‘Metal complexes as a promising source for new antibiotics’ by Angelo Frei et al., Chem. Sci., 2020, 11, 2627–2639

    Significant variation in transformation frequency in Streptococcus pneumoniae

    Get PDF
    The naturally transformable bacterium Streptococcus pneumoniae is able to take up extracellular DNA and incorporate it into its genome. Maintaining natural transformation within a species requires that the benefits of transformation outweigh its costs. Although much is known about the distribution of natural transformation among bacterial species, little is known about the degree to which transformation frequencies vary within species. Here we find that there is significant variation in transformation frequency between strains of Streptococcus pneumoniae isolated from asymptomatic carriage, and that this variation is not concordant with isolate genetic relatedness. Polymorphism in the signalling system regulating competence is also not causally related to differences in transformation frequency, although this polymorphism does influence the degree of genetic admixture experienced by bacterial strains. These data suggest that bacteria can evolve new transformation frequencies over short evolutionary timescales. This facility may permit cells to balance the potential costs and benefits of transformation by regulating transformation frequency in response to environmental conditions

    Compensatory Evolution of pbp Mutations Restores the Fitness Cost Imposed by β-Lactam Resistance in Streptococcus pneumoniae

    Get PDF
    The prevalence of antibiotic resistance genes in pathogenic bacteria is a major challenge to treating many infectious diseases. The spread of these genes is driven by the strong selection imposed by the use of antibacterial drugs. However, in the absence of drug selection, antibiotic resistance genes impose a fitness cost, which can be ameliorated by compensatory mutations. In Streptococcus pneumoniae, β-lactam resistance is caused by mutations in three penicillin-binding proteins, PBP1a, PBP2x, and PBP2b, all of which are implicated in cell wall synthesis and the cell division cycle. We found that the fitness cost and cell division defects conferred by pbp2b mutations (as determined by fitness competitive assays in vitro and in vivo and fluorescence microscopy) were fully compensated by the acquisition of pbp2x and pbp1a mutations, apparently by means of an increased stability and a consequent mislocalization of these protein mutants. Thus, these compensatory combinations of pbp mutant alleles resulted in an increase in the level and spectrum of β-lactam resistance. This report describes a direct correlation between antibiotic resistance increase and fitness cost compensation, both caused by the same gene mutations acquired by horizontal transfer. The clinical origin of the pbp mutations suggests that this intergenic compensatory process is involved in the persistence of β-lactam resistance among circulating strains. We propose that this compensatory mechanism is relevant for β-lactam resistance evolution in Streptococcus pneumoniae

    Inhibition of Competence Development, Horizontal Gene Transfer and Virulence in Streptococcus pneumoniae by a Modified Competence Stimulating Peptide

    Get PDF
    Competence stimulating peptide (CSP) is a 17-amino acid peptide pheromone secreted by Streptococcus pneumoniae. Upon binding of CSP to its membrane-associated receptor kinase ComD, a cascade of signaling events is initiated, leading to activation of the competence regulon by the response regulator ComE. Genes encoding proteins that are involved in DNA uptake and transformation, as well as virulence, are upregulated. Previous studies have shown that disruption of key components in the competence regulon inhibits DNA transformation and attenuates virulence. Thus, synthetic analogues that competitively inhibit CSPs may serve as attractive drugs to control pneumococcal infection and to reduce horizontal gene transfer during infection. We performed amino acid substitutions on conserved amino acid residues of CSP1 in an effort to disable DNA transformation and to attenuate the virulence of S. pneumoniae. One of the mutated peptides, CSP1-E1A, inhibited development of competence in DNA transformation by outcompeting CSP1 in time and concentration-dependent manners. CSP1-E1A reduced the expression of pneumococcal virulence factors choline binding protein D (CbpD) and autolysin A (LytA) in vitro, and significantly reduced mouse mortality after lung infection. Furthermore, CSP1-E1A attenuated the acquisition of an antibiotic resistance gene and a capsule gene in vivo. Finally, we demonstrated that the strategy of using a peptide inhibitor is applicable to other CSP subtype, including CSP2. CSP1-E1A and CSP2-E1A were able to cross inhibit the induction of competence and DNA transformation in pneumococcal strains with incompatible ComD subtypes. These results demonstrate the applicability of generating competitive analogues of CSPs as drugs to control horizontal transfer of antibiotic resistance and virulence genes, and to attenuate virulence during infection by S. pneumoniae
    corecore