1,258 research outputs found

    Pramlintide, the synthetic analogue of amylin: physiology, pathophysiology, and effects on glycemic control, body weight, and selected biomarkers of vascular risk

    Get PDF
    Pramlintide is a synthetic version of the naturally occurring pancreatic peptide called amylin. Amylin and pramlintide have similar effects on lowering postprandial glucose, lowering postprandial glucagon and delaying gastric emptying. Pramlintide use in type 1 and insulin requiring type 2 diabetes mellitus (DM) is associated with modest reductions in HbA1c often accompanied by weight loss. Limited data show a neutral effect on blood pressure. Small studies suggest small reductions in LDL-cholesterol in type 2 DM and modest reductions in triglycerides in type 1 DM. Markers of oxidation are also reduced in conjunction with reductions in postprandial glucose. Nausea is the most common side effect. These data indicate that pramlintide has a role in glycemic control of both type 1 and type 2 DM. Pramlintide use is associated with favorable effects on weight, lipids and other biomarkers for atherosclerotic disease

    Neuraminidase inhibitors for preventing and treating influenza in healthy adults and children

    Get PDF
    BACKGROUND: Neuraminidase inhibitors (NIs) are stockpiled and recommended by public health agencies for treating and preventing seasonal and pandemic influenza. They are used clinically worldwide. OBJECTIVES: To describe the potential benefits and harms of NIs for influenza in all age groups by reviewing all clinical study reports of published and unpublished randomised, placebo-controlled trials and regulatory comments. SEARCH METHODS: We searched trial registries, electronic databases (to 22 July 2013) and regulatory archives, and corresponded with manufacturers to identify all trials. We also requested clinical study reports. We focused on the primary data sources of manufacturers but we checked that there were no published randomised controlled trials (RCTs) from non-manufacturer sources by running electronic searches in the following databases: the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, MEDLINE (Ovid), EMBASE, Embase.com, PubMed (not MEDLINE), the Database of Reviews of Effects, the NHS Economic Evaluation Database and the Health Economic Evaluations Database. SELECTION CRITERIA: Randomised, placebo-controlled trials on adults and children with confirmed or suspected exposure to naturally occurring influenza. DATA COLLECTION AND ANALYSIS: We extracted clinical study reports and assessed risk of bias using purpose-built instruments. We analysed the effects of zanamivir and oseltamivir on time to first alleviation of symptoms, influenza outcomes, complications, hospitalisations and adverse events in the intention-to-treat (ITT) population. All trials were sponsored by the manufacturers. MAIN RESULTS: We obtained 107 clinical study reports from the European Medicines Agency (EMA), GlaxoSmithKline and Roche. We accessed comments by the US Food and Drug Administration (FDA), EMA and Japanese regulator. We included 53 trials in Stage 1 (a judgement of appropriate study design) and 46 in Stage 2 (formal analysis), including 20 oseltamivir (9623 participants) and 26 zanamivir trials (14,628 participants). Inadequate reporting put most of the zanamivir studies and half of the oseltamivir studies at a high risk of selection bias. There were inadequate measures in place to protect 11 studies of oseltamivir from performance bias due to non-identical presentation of placebo. Attrition bias was high across the oseltamivir studies and there was also evidence of selective reporting for both the zanamivir and oseltamivir studies. The placebo interventions in both sets of trials may have contained active substances. Time to first symptom alleviation. For the treatment of adults, oseltamivir reduced the time to first alleviation of symptoms by 16.8 hours (95% confidence interval (CI) 8.4 to 25.1 hours, P 1000) and nausea whilst on treatment (RD 4.15%, 95% CI 0.86 to 9.51); NNTH = 25 (95% CI 11 to 116). AUTHORS' CONCLUSIONS: Oseltamivir and zanamivir have small, non-specific effects on reducing the time to alleviation of influenza symptoms in adults, but not in asthmatic children. Using either drug as prophylaxis reduces the risk of developing symptomatic influenza. Treatment trials with oseltamivir or zanamivir do not settle the question of whether the complications of influenza (such as pneumonia) are reduced, because of a lack of diagnostic definitions. The use of oseltamivir increases the risk of adverse effects, such as nausea, vomiting, psychiatric effects and renal events in adults and vomiting in children. The lower bioavailability may explain the lower toxicity of zanamivir compared to oseltamivir. The balance between benefits and harms should be considered when making decisions about use of both NIs for either the prophylaxis or treatment of influenza. The influenza virus-specific mechanism of action proposed by the producers does not fit the clinical evidence

    Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex

    Get PDF
    As in other mammals with binocular vision, monocular lid suture in mice induces bidirectional plasticity: rapid weakening of responses evoked through the deprived eye followed by delayed strengthening of responses through the open eye. It has been proposed that these bidirectional changes occur through three distinct processes: first, deprived-eye responses rapidly weaken through homosynaptic long-term depression (LTD); second, as the period of deprivation progresses, the modification threshold determining the boundary between synaptic depression and synaptic potentiation becomes lower, favouring potentiation; and third, facilitated by the decreased modification threshold, open-eye responses are strengthened via homosynaptic long-term potentiation (LTP). Of these processes, deprived-eye depression has received the greatest attention, and although several alternative hypotheses are also supported by current research, evidence suggests that α-amino-3- hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor endocytosis through LTD is a key mechanism. The change in modification threshold appears to occur partly through changes in N-methyl-d-aspartate (NMDA) receptor subunit composition, with decreases in the ratio of NR2A to NR2B facilitating potentiation. Although limited research has directly addressed the question of open-eye potentiation, several studies suggest that LTP could account for observed changes in vivo. This review will discuss evidence supporting this three-stage model, along with outstanding issues in the field

    RotoStep: A Chromosome Dynamics Simulator Reveals Mechanisms of Loop Extrusion

    Get PDF
    ChromoShake is a three-dimensional simulator designed to explore the range of configurational states a chromosome can adopt based on thermodynamic fluctuations of the polymer chain. Here, we refine ChromoShake to generate dynamic simulations of a DNA-based motor protein such as condensin walking along the chromatin substrate. We model walking as a rotation of DNA-binding heat-repeat proteins around one another. The simulation is applied to several configurations of DNA to reveal the consequences of mechanical stepping on taut chromatin under tension versus loop extrusion on single-tethered, floppy chromatin substrates. These simulations provide testable hypotheses for condensin and other DNA-based motors functioning along interphase chromosomes. Our model reveals a novel mechanism for condensin enrichment in the pericentromeric region of mitotic chromosomes. Increased condensin dwell time at centromeres results in a high density of pericentric loops that in turn provide substrate for additional condensin

    AI-Assisted Forward Modeling of Biological Structures

    Get PDF
    The rise of machine learning and deep learning technologies have allowed researchers to automate image classification. We describe a method that incorporates automated image classification and principal component analysis to evaluate computational models of biological structures. We use a computational model of the kinetochore to demonstrate our artificial-intelligence (AI)-assisted modeling method. The kinetochore is a large protein complex that connects chromosomes to the mitotic spindle to facilitate proper cell division. The kinetochore can be divided into two regions: the inner kinetochore, including proteins that interact with DNA; and the outer kinetochore, comprised of microtubule-binding proteins. These two kinetochore regions have been shown to have different distributions during metaphase in live budding yeast and therefore act as a test case for our forward modeling technique. We find that a simple convolutional neural net (CNN) can correctly classify fluorescent images of inner and outer kinetochore proteins and show a CNN trained on simulated, fluorescent images can detect difference in experimental images. A polymer model of the ribosomal DNA locus serves as a second test for the method. The nucleolus surrounds the ribosomal DNA locus and appears amorphous in live-cell, fluorescent microscopy experiments in budding yeast, making detection of morphological changes challenging. We show a simple CNN can detect subtle differences in simulated images of the ribosomal DNA locus, demonstrating our CNN-based classification technique can be used on a variety of biological structures

    Palladium nanoparticles by electrospinning from poly(acrylonitrile-co-acrylic acid)-PdCl2 solutions. Relations between preparation conditions, particle size, and catalytic activity

    Get PDF
    Catalytic palladium (Pd) nanoparticles on electrospun copolymers of acrylonitrile and acrylic acid (PAN-AA) mats were produced via reduction of PdCl2 with hydrazine. Fiber mats were electrospun from homogeneous solutions of PAN-AA and PdCl2 in dimethylformamide (DMF). Pd cations were reduced to Pd metals when fiber mats were treated in an aqueous hydrazine solution at room temperature. Pd atoms nucleate and form small crystallites whose sizes were estimated from the peak broadening of X-ray diffraction peaks. Two to four crystallites adhere together and form agglomerates. Agglomerate sizes and fiber diameters were determined by scanning and transmission electron microscopy. Spherical Pd nanoparticles were dispersed homogeneously on the electrospun nanofibers. The effects of copolymer composition and amount of PdCl2 on particle size were investigated. Pd particle size mainly depends on the amount of acrylic acid functional groups and PdCl2 concentration in the spinning solution. Increasing acrylic acid concentration on polymer chains leads to larger Pd nanoparticles. In addition, Pd particle size becomes larger with increasing PdCl2 concentration in the spinning solution. Hence, it is possible to tune the number density and the size of metal nanoparticles. The catalytic activity of the Pd nanoparticles in electrospun mats was determined by selective hydrogenation of dehydrolinalool (3,7-dimethyloct-6- ene-1-yne-3-ol, DHL) in toluene at 90 °C. Electrospun fibers with Pd particles have 4.5 times higher catalytic activity than the current Pd/Al2O3 catalyst

    Geometric partitioning of cohesin and condensin is a consequence of chromatin loops

    Get PDF
    SMC (structural maintenance of chromosomes) complexes condensin and cohesin are crucial for proper chromosome organization. Condensin has been reported to be a mechanochemical motor capable of forming chromatin loops, while cohesin passively diffuses along chromatin to tether sister chromatids. In budding yeast, the pericentric region is enriched in both condensin and cohesin. As in higher-eukaryotic chromosomes, condensin is localized to the axial chromatin of the pericentric region, while cohesin is enriched in the radial chromatin. Thus, the pericentric region serves as an ideal model for deducing the role of SMC complexes in chromosome organization. We find condensin-mediated chromatin loops establish a robust chromatin organization, while cohesin limits the area that chromatin loops can explore. Upon biorientation, extensional force from the mitotic spindle aggregates condensin-bound chromatin from its equilibrium position to the axial core of pericentric chromatin, resulting in amplified axial tension. The axial localization of condensin depends on condensin's ability to bind to chromatin to form loops, while the radial localization of cohesin depends on cohesin's ability to diffuse along chromatin. The different chromatin-tethering modalities of condensin and cohesin result in their geometric partitioning in the presence of an extensional force on chromatin

    The use of clinical study reports to enhance the quality of systematic reviews: a survey of systematic review authors

    Get PDF
    Background: Clinical study reports (CSRs) are produced for marketing authorisation applications. They often contain considerably more information about, and data from, clinical trials than corresponding journal publications. Use of data from CSRs might help circumvent reporting bias, but many researchers appear to be unaware of their existence or potential value. Our survey aimed to gain insight into the level of familiarity, understanding and use of CSRs, and to raise awareness of their potential within the systematic review community. We also aimed to explore the potential barriers faced when obtaining and using CSRs in systematic reviews. Methods: Online survey of systematic reviewers who (i) had requested or used CSRs, (ii) had considered but not used CSRs and (iii) had not considered using CSRs was conducted. Cochrane reviewers were contacted twice via the Cochrane monthly digest. Non-Cochrane reviewers were reached via journal and other website postings. Results: One hundred sixty respondents answered an open invitation and completed the questionnaire; 20/ 160 (13%) had previously requested or used CSRs and other regulatory documents, 7/160 (4%) had considered but not used CSRs and 133/160 (83%) had never considered this data source. Survey respondents mainly sought data from the European Medicines Agency (EMA) and/or the Food and Drug Administration (FDA). Motivation for using CSRs stemmed mainly from concerns about reporting bias 11/20 (55%), specifically outcome reporting bias 11/20 (55%) and publication bias 5/20 (25%). The barriers to using CSRs noted by all types of respondents included current limited access to these documents (43 respondents), the time and resources needed to obtain and include these data in evidence syntheses (n = 25) and lack of guidance about how to use these sources in systematic reviews (n = 26). Conclusions: Most respondents (irrespective of whether they had previously used them) agreed that access to CSRs is important, and suggest that further guidance on how to use and include these data would help to promote their use in future systematic reviews. Most respondents who received CSRs considered them to be valuable in their systematic review and/or meta-analysis

    Can bounded and self-interested agents be teammates? Application to planning in ad hoc teams

    Get PDF
    Planning for ad hoc teamwork is challenging because it involves agents collaborating without any prior coordination or communication. The focus is on principled methods for a single agent to cooperate with others. This motivates investigating the ad hoc teamwork problem in the context of self-interested decision-making frameworks. Agents engaged in individual decision making in multiagent settings face the task of having to reason about other agents’ actions, which may in turn involve reasoning about others. An established approximation that operationalizes this approach is to bound the infinite nesting from below by introducing level 0 models. For the purposes of this study, individual, self-interested decision making in multiagent settings is modeled using interactive dynamic influence diagrams (I-DID). These are graphical models with the benefit that they naturally offer a factored representation of the problem, allowing agents to ascribe dynamic models to others and reason about them. We demonstrate that an implication of bounded, finitely-nested reasoning by a self-interested agent is that we may not obtain optimal team solutions in cooperative settings, if it is part of a team. We address this limitation by including models at level 0 whose solutions involve reinforcement learning. We show how the learning is integrated into planning in the context of I-DIDs. This facilitates optimal teammate behavior, and we demonstrate its applicability to ad hoc teamwork on several problem domains and configurations
    corecore