589 research outputs found

    New Ultra Small Iron-Oxide Nanoparticles with Titanium-Carbamate Coating: Preparation and Magnetic Properties

    Get PDF
    This work deals with the preparation and chemical characterization of new Ultra-Small Iron-Oxide Superparamagnetic Nanoparticles (USPIONs) functionalized with Titanium-carbamate. The synthesis was performed starting from oleate-coated and 2-pyrrolidone-coated USPIONs having a maghemite ( -Fe2O3) and magnetite (Fe3O4) crystalline core, respectively. Zero-field-cooled (ZFC) and field-cooled (FC) magnetic susceptibility curves as well as the magnetization behavior as a function of temperature are reported and discussed in view of the superparamagnetic properties and coating effect of these new magnetic nanoparticles. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3545

    Infrared electron modes in light deformed clusters

    Full text link
    Infrared quadrupole modes (IRQM) of the valence electrons in light deformed sodium clusters are studied by means of the time-dependent local-density approximation (TDLDA). IRQM are classified by angular momentum components λμ=\lambda\mu =20, 21 and 22 whose μ\mu branches are separated by cluster deformation. In light clusters with a low spectral density, IRQM are unambiguously related to specific electron-hole excitations, thus giving access to the single-electron spectrum near the Fermi surface (HOMO-LUMO region). Most of IRQM are determined by cluster deformation and so can serve as a sensitive probe of the deformation effects in the mean field. The IRQM branch λμ=\lambda\mu =21 is coupled with the magnetic scissors mode, which gives a chance to detect the latter. We discuss two-photon processes, Raman scattering (RS), stimulated emission pumping (SEP), and stimulated adiabatic Raman passage (STIRAP), as the relevant tools to observe IRQM. A new method to detect the IRQM population in clusters is proposed.Comment: 22 pages, 6 figure

    Fgf15 Neurons of the Dorsomedial Hypothalamus Control Glucagon Secretion and Hepatic Gluconeogenesis.

    Get PDF
    The counterregulatory response to hypoglycemia is an essential survival function. It is controlled by an integrated network of glucose-responsive neurons, which trigger endogenous glucose production to restore normoglycemia. The complexity of this glucoregulatory network is, however, only partly characterized. In a genetic screen of a panel of recombinant inbred mice we previously identified Fgf15, expressed in neurons of the dorsomedial hypothalamus (DMH), as a negative regulator of glucagon secretion. Here, we report on the generation of Fgf15 <sup>CretdTomato</sup> mice and their use to further characterize these neurons. We show that they were glutamatergic and comprised glucose-inhibited and glucose-excited neurons. When activated by chemogenetics, Fgf15 neurons prevented the increase in vagal nerve firing and the secretion of glucagon normally triggered by insulin-induced hypoglycemia. On the other hand, they increased the activity of the sympathetic nerve in the basal state and prevented its silencing by glucose overload. Higher sympathetic tone increased hepatic Creb1 phosphorylation, Pck1 mRNA expression, and hepatic glucose production leading to glucose intolerance. Thus, Fgf15 neurons of the DMH participate in the counterregulatory response to hypoglycemia by a direct adrenergic stimulation of hepatic glucose production while suppressing vagally induced glucagon secretion. This study provides new insights into the complex neuronal network that prevents the development of hypoglycemia

    A minimally invasive technique for short spiral implant insertion with contextual crestal sinus lifting in the atrophic maxilla: A preliminary report

    Get PDF
    The most recently reported techniques for the rehabilitation of the atrophic posterior maxilla are increasingly less invasive, as they are generally oriented to avoid sinus floor elevation with lateral access. The authors describe a mini-invasive surgical technique for short spiral implant insertion for the prosthetic rehabilitation of the atrophic posterior maxilla, which could be considered a combination of several previously described techniques based on the under-preparation of the implant site to improve fixture primary stability and crestal approach to the sinus floor elevation without heterologous bone graft. Eighty short spiral implants were inserted in the molar area of the maxilla in patients with 4.5–6 mm of alveolar bone, measured on pre-operative computed tomography. The surgical technique involved careful drilling for the preparation of implant sites at differentiated depths, allowing bone dislocation in the apical direction, traumatic crestal sinus membrane elevation, and insertion of an implant (with spiral morphology) longer than pre-operative measurements. Prostheses were all single crowns. In all cases, a spiral implant 2–4 mm longer than the residual bone was placed. Only two implants were lost due to peri-implantitis but subsequently replaced and followed-up. Bone loss values around the implants after three months (at the re-opening) ranged from 0 to 0.6 mm, (median value: 0.1 mm), while after two years, the same values ranged from 0.4 to 1.3 mm (median value: 0.7 mm). Clinical post-operative complications did not occur. After ten years, no implant has been lost. Overall, the described protocol seems to show good results in terms of predictability and patient compliance

    Spontaneous Learning of Visual Structures in Domestic Chicks

    Get PDF
    Effective communication crucially depends on the ability to produce and recognize structured signals, as apparent in language and birdsong. Although it is not clear to what extent similar syntactic-like abilities can be identified in other animals, recently we reported that domestic chicks can learn abstract visual patterns and the statistical structure defined by a temporal sequence of visual shapes. However, little is known about chicks’ ability to process spatial/positional information from visual configurations. Here, we used filial imprinting as an unsupervised learning mechanism to study spontaneous encoding of the structure of a configuration of different shapes. After being exposed to a triplet of shapes (ABC or CAB), chicks could discriminate those triplets from a permutation of the same shapes in different order (CAB or ABC), revealing a sensitivity to the spatial arrangement of the elements. When tested with a fragment taken from the imprinting triplet that followed the familiar adjacency-relationships (AB or BC) vs. one in which the shapes maintained their position with respect to the stimulus edges (AC), chicks revealed a preference for the configuration with familiar edge elements, showing an edge bias previously found only with temporal sequences

    To be or not to be a germ cell: The extragonadal germ cell tumor paradigm

    Get PDF
    In the human embryo, the genetic program that orchestrates germ cell specification in-volves the activation of epigenetic and transcriptional mechanisms that make the germline a unique cell population continuously poised between germness and pluripotency. Germ cell tumors, neo-plasias originating from fetal or neonatal germ cells, maintain such dichotomy and can adopt either pluripotent features (embryonal carcinomas) or germness features (seminomas) with a wide range of phenotypes in between these histotypes. Here, we review the basic concepts of cell specification, migration and gonadal colonization of human primordial germ cells (hPGCs) highlighting the analogies of transcriptional/epigenetic programs between these two cell types

    Human adipose-derived stromal cells transplantation prolongs reproductive lifespan on mouse models of mild and severe premature ovarian insufficiency

    Get PDF
    Background Although recent studies have investigated the ability of Mesenchymal Stromal Cells (MSCs) to alleviate short-term ovarian damage in animal models of chemotherapy-induced Premature Ovarian Insufficiency (POI), no data are available on reproductive lifespan recovery, especially in a severe POI condition. For this reason, we investigated the potential of MSCs isolated from human adipose tissue (hASCs), since they are easy to harvest and abundant, in ameliorating the length and performance of reproductive life in both mild and severe chemotherapy-induced murine POI models. Methods Mild and severe POI models were established by intraperitoneally administering a light (12 mg/kg busulfan + 120 mg/kg cyclophosphamide) or heavy (30 mg/kg busulfan + 120 mg/kg cyclophosphamide) dose of chemotherapy, respectively, in CD1 mice. In both cases, a week later, 1 × 106 hASCs were transplanted systemically through the tail vein. After four additional weeks, some females were sacrificed to collect ovaries for morphological evaluation. H&E staining was performed to assess stroma alteration and to count follicle numbers; immunofluorescence staining for αSMA was used to analyse vascularization. Of the remaining females, some were mated after superovulation to collect 2-cell embryos in order to evaluate their pre-implantation developmental capacity in vitro, while others were naturally mated to monitor litters and reproductive lifespan length. F1 litters’ weight, ovaries and reproductive lifespan were also analysed. Results hASC transplantation alleviated ovarian weight loss and size decrease and reduced alterations on ovarian stroma and vasculature, concurrently preventing the progressive follicle stockpile depletion caused by chemotherapy. These effects were associated with the preservation of the oocyte competence to develop into blastocyst in vitro and, more interestingly, with a significant decrease of chemotherapy-induced POI features, like shortness of reproductive lifespan, reduced number of litters and longer time to plug (the latter only presented in the severe POI model). Conclusion Human ASC transplantation was able to significantly reduce all the alterations induced by the chemotherapeutic treatment, while improving oocyte quality and prolonging reproductive functions, thus counteracting infertility. These results, strengthened by the use of an outbred model, support the potential applications of hASCs in women with POI, nowadays mainly induced by anticancer therapies

    Anatomical Characteristics Of Intrapetrous Carotid Artery : A 3d Segmentation Study On Head Ct-Scan

    Get PDF
    The intrapetrous portion of internal carotid artery (IPCA) is one of the most unexplored anatomical regions, and its three-dimensional reconstruction in living subjects is still missing. The present study aims at describing IPCA on 3D models extracted from head CT-scans. The intrapetrous carotid artery was manually segmented on head CT-scans of 100 healthy patients free from vascular and neurological pathologies (50 males and 50 females aged between 18 and 91 years). Angles of the posterior and anterior genu, diameter and length of the horizontal portion, and volume of the entire canal were calculated through VAM\uae software. Statistically significant differences according to sex and side were assessed through two-way ANOVA test (p<0.05). Correlation of each measurement with age was calculated as well. On average the angles of the posterior and anterior genu were 120.1\ub110.4\ub0 and 118.0\ub110.0\ub0 in males, 119.5\ub19.2\ub0 and 117.6\ub110.3\ub0 in females, respectively, without statistically significant differences according to sex or side (p>0.05). Average length and diameter of the horizontal part were respectively 25.5\ub12.9 mm and 5.8\ub10.8 mm in males, 24.0\ub12.3 mm and 5.3\ub10.8 mm in females. The volume of IPCA was 0.941\ub10.215 cm3 in males, and 0.752\ub10.159 cm3 in females. Length and diameter of horizontal portion, and volume of IPCA showed statistically significant differences according to sex (p<0.05). No correlation with age was found. This study first provided data concerning not only linear and angular measurements, but also volumes of IPCA, useful in planning surgical interventions of the cranial base

    Self-Consistent Separable Rpa Approach for Skyrme Forces: Axial Nuclei

    Get PDF
    The self-consistent separable RPA (random phase approximation) method is formulated for Skyrme forces with pairing. The method is based on a general self-consistent procedure for factorization of the two-body interaction. It is relevant for various density- and current-dependent functionals. The contributions of the time-even and time-odd Skyrme terms as well as of the Coulomb and pairing terms to the residual interaction are taken self-consistently into account. Most of the expression have a transparent analytical form, which makes the method convenient for the treatment and analysis. The separable character of the residual interaction allows to avoid diagonalization of high-rank RPA matrices and thus to minimize the calculation effort. The previous studies have demonstrated high numerical accuracy and efficiency of the method for spherical nuclei. In this contribution, the method is specified for axial nuclei. We provide systematic and detailed presentation of formalism and discuss different aspects of the model.Comment: 42 page
    corecore