15,337 research outputs found
New insights into the biomechanics of Legg-Calvé-Perthes’ disease: The role of epiphyseal skeletal immaturity in vascular obstruction
ObjectivesLegg–Calvé–Perthes’ disease (LCP) is an idiopathic osteonecrosis of the femoral head that is most common in children between four and eight years old. The factors that lead to the onset of LCP are still unclear; however, it is believed that interruption of the blood supply to the developing epiphysis is an important factor in the development of the condition.MethodsFinite element analysis modelling of the blood supply to the juvenile epiphysis was investigated to understand under which circumstances the blood vessels supplying the femoral epiphysis could become obstructed. The identification of these conditions is likely to be important in understanding the biomechanics of LCP.ResultsThe results support the hypothesis that vascular obstruction to the epiphysis may arise when there is delayed ossification and when articular cartilage has reduced stiffness under compression.ConclusionThe findings support the theory of vascular occlusion as being important in the pathophysiology of Perthes disease
The effect of boundary constraints on finite element modelling of the human pelvis
The use of finite element analysis (FEA) to investigate the biomechanics of anatomical systems critically relies on the specification of physiologically representative boundary conditions. The biomechanics of the pelvis has been the specific focus of a number of FEA studies previously, but it is also a key aspect in other investigations of, for example, the hip joint or new design of hip prostheses. In those studies, the pelvis has been modelled in a number of ways with a variety of boundary conditions, ranging from a model of the whole pelvic girdle including soft tissue attachments to a model of an isolated hemi-pelvis. The current study constructed a series of FEA models of the same human pelvis to investigate the sensitivity of the predicted stress distributions to the type of boundary conditions applied, in particular to represent the sacro-iliac joint and pubic symphysis. Varying the method of modelling the sacro-iliac joint did not produce significant variations in the stress distribution, however changes to the modelling of the pubic symphysis were observed to have a greater effect on the results. Over-constraint of the symphysis prevented the bending of the pelvis about the greater sciatic notch, and underestimated high stresses within the ilium. However, permitting medio-lateral translation to mimic widening of the pelvis addressed this problem. These findings underline the importance of applying the appropriate boundary conditions to FEA models, and provide guidance on suitable methods of constraining the pelvis when, for example, scan data has not captured the full pelvic girdle. The results also suggest a valid method for performing hemi-pelvic modelling of cadaveric or archaeological remains which are either damaged or incomplete
High-Level Correlated Approach to the Jellium Surface Energy, Without Uniform-Electron-Gas Input
We resolve the long-standing controversy over the surface energy of simple
metals: Density functional methods that require uniform-electron-gas input
agree with each other at many levels of sophistication, but not with high-level
correlated calculations like Fermi Hypernetted Chain and Diffusion Monte Carlo
(DMC) that predict the uniform-gas correlation energy. Here we apply a very
high-level correlated approach, the inhomogeneous Singwi-Tosi-Land-Sj\"olander
(ISTLS) method, and find that the density functionals are indeed reliable
(because the surface energy is "bulk-like"). ISTLS values are close to
recently-revised DMC values. Our work also vindicates the previously-disputed
use of uniform-gas-based nonlocal kernels in time-dependent density functional
theory.Comment: 4 pages, 1 figur
Beyond the Random Phase Approximation for the Electron Correlation Energy: The Importance of Single Excitations
The random phase approximation (RPA) for the electron correlation energy,
combined with the exact-exchange energy, represents the state-of-the-art
exchange-correlation functional within density-functional theory (DFT).
However, the standard RPA practice -- evaluating both the exact-exchange and
the RPA correlation energy using local or semilocal Kohn-Sham (KS) orbitals --
leads to a systematic underbinding of molecules and solids. Here we demonstrate
that this behavior is largely corrected by adding a "single excitation" (SE)
contribution, so far not included in the standard RPA scheme. A similar
improvement can also be achieved by replacing the non-self-consistent
exact-exchange total energy by the corresponding self-consistent Hartree-Fock
total energy, while retaining the RPA correlation energy evaluated using
Kohn-Sham orbitals. Both schemes achieve chemical accuracy for a standard
benchmark set of non-covalent intermolecular interactions.Comment: 5 pages, 4 figures, and an additional supplementary materia
Collisionless hydrodynamics for 1D motion of inhomogeneous degenerate electron gases: equivalence of two recent descriptions
Recently I. Tokatly and O. Pankratov (''TP'', Phys. Rev. B 60, 15550 (1999))
used velocity moments of a semiclassical kinetic equation to derive a
hydrodynamic description of electron motion in a degenerate electron gas.
Independently, the present authors (Theochem 501-502, 327 (2000)) used
considerations arising from the Harmonic Potential Theorem (Phys. Rev. Lett.
73, 2244 (1994)) to generate a new form of high-frequency hydrodynamics for
inhomogeneous degenerate electron gases (HPT-N3 hydrodynamics). We show here
that TP hydrodynamics yields HPT-N3 hydrodynamics when linearized about a
Thomas-Fermi groundstate with one-dimensional spatial inhomnogeneity.Comment: 17p
Correlation potentials for molecular bond dissociation within the self-consistent random phase approximation
Self-consistent correlation potentials for H and LiH for various
inter-atomic separations are obtained within the random phase approximation
(RPA) of density functional theory. The RPA correlation potential shows a peak
at the bond midpoint, which is an exact feature of the true correlation
potential, but lacks another exact feature: the step important to preserve
integer charge on the atomic fragments in the dissociation limit. An analysis
of the RPA energy functional in terms of fractional charge is given which
confirms these observations. We find that the RPA misses the derivative
discontinuity at odd integer particle numbers but explicitly eliminates the
fractional spin error in the exact-exchange functional. The latter finding
explains the accurate total energy in the dissociation limit.Comment: 9 pages, 10 figure
The structure of the self-schema in clinical depression: Differences related to episode recurrence.
A central tenet of cognitive theories of depression implicates the organisation of self-referential material in the depressive process. However, few studies have extended beyond the examination of cognitive products and processes to assess the interconnectedness of the depressive self-schema. Clinically depressed participants completed a computerised measure of the cognitive organisation of positive and negative adjectives. Participants organised adjectives according to two dimensions (i.e., valence and self-descriptiveness), and an interstimulus distance index of interconnectedness was computed. The sample was divided into two groups to assess whether differential organisation was associated with the number of previous episodes individuals had experienced. Analyses indicated that the patient groups did not differ from one another on demographic characteristics, severity of symptomatology, or comorbidity. Those individuals with more recurrent depression demonstrated significantly greater organisation of negative content and less interconnectedness of positive content than those with less recurrent depression. The implications of these results for the organisation of cognitive content in depression are discussed and directions for future research are provide
Evaluation of the soil moisture prediction accuracy of a space radar using simulation techniques
Image simulation techniques were employed to generate synthetic aperture radar images of a 17.7 km x 19.3 km test site located east of Lawrence, Kansas. The simulations were performed for a space SAR at an orbital altitude of 600 km, with the following sensor parameters: frequency = 4.75 GHz, polarization = HH, and angle of incidence range = 7 deg to 22 deg from nadir. Three sets of images were produced corresponding to three different spatial resolutions; 20 m x 20 m with 12 looks, 100 m x 100 m with 23 looks, and 1 km x 1 km with 1000 looks. Each set consisted of images for four different soil moisture distributions across the test site. Results indicate that, for the agricultural portion of the test site, the soil moisture in about 90% of the pixels can be predicted with an accuracy of = + or - 20% of field capacity. Among the three spatial resolutions, the 1 km x 1 km resolution gave the best results for most cases, however, for very dry soil conditions, the 100 m x 100 m resolution was slightly superior
Transmission dynamics and prospects for the elimination of canine rabies
Rabies has been eliminated from domestic dog populations in Western Europe and North America, but continues to kill many thousands of people throughout Africa and Asia every year. A quantitative understanding of transmission dynamics in domestic dog populations provides critical information to assess whether global elimination of canine rabies is possible. We report extensive observations of individual rabid animals in Tanzania and generate a uniquely detailed analysis of transmission biology, which explains important epidemiological features, including the level of variation in epidemic trajectories. We found that the basic reproductive number for rabies, R<sub>0</sub>, is very low in our study area in rural Africa (∼1.2) and throughout its historic global range (<2). This finding provides strong support for the feasibility of controlling endemic canine rabies by vaccination, even near wildlife areas with large wild carnivore populations. However, we show that rapid turnover of domestic dog populations has been a major obstacle to successful control in developing countries, thus regular pulse vaccinations will be required to maintain population-level immunity between campaigns. Nonetheless our analyses suggest that with sustained, international commitment, global elimination of rabies from domestic dog populations, the most dangerous vector to humans, is a realistic goal
- …