494 research outputs found

    Imaging Oxygen Defects and their Motion at a Manganite Surface

    Full text link
    Manganites are technologically important materials, used widely as solid oxide fuel cell cathodes: they have also been shown to exhibit electroresistance. Oxygen bulk diffusion and surface exchange processes are critical for catalytic action, and numerous studies of manganites have linked electroresistance to electrochemical oxygen migration. Direct imaging of individual oxygen defects is needed to underpin understanding of these important processes. It is not currently possible to collect the required images in the bulk, but scanning tunnelling microscopy could provide such data for surfaces. Here we show the first atomic resolution images of oxygen defects at a manganite surface. Our experiments also reveal defect dynamics, including oxygen adatom migration, vacancy-adatom recombination and adatom bistability. Beyond providing an experimental basis for testing models describing the microscopics of oxygen migration at transition metal oxide interfaces, our work resolves the long-standing puzzle of why scanning tunnelling microscopy is more challenging for layered manganites than for cuprates.Comment: 7 figure

    Protein Pattern Formation

    Full text link
    Protein pattern formation is essential for the spatial organization of many intracellular processes like cell division, flagellum positioning, and chemotaxis. A prominent example of intracellular patterns are the oscillatory pole-to-pole oscillations of Min proteins in \textit{E. coli} whose biological function is to ensure precise cell division. Cell polarization, a prerequisite for processes such as stem cell differentiation and cell polarity in yeast, is also mediated by a diffusion-reaction process. More generally, these functional modules of cells serve as model systems for self-organization, one of the core principles of life. Under which conditions spatio-temporal patterns emerge, and how these patterns are regulated by biochemical and geometrical factors are major aspects of current research. Here we review recent theoretical and experimental advances in the field of intracellular pattern formation, focusing on general design principles and fundamental physical mechanisms.Comment: 17 pages, 14 figures, review articl

    Super-Resolution Dynamic Imaging of Dendritic Spines Using a Low-Affinity Photoconvertible Actin Probe

    Get PDF
    The actin cytoskeleton of dendritic spines plays a key role in morphological aspects of synaptic plasticity. The detailed analysis of the spine structure and dynamics in live neurons, however, has been hampered by the diffraction-limited resolution of conventional fluorescence microscopy. The advent of nanoscopic imaging techniques thus holds great promise for the study of these processes. We implemented a strategy for the visualization of morphological changes of dendritic spines over tens of minutes at a lateral resolution of 25 to 65 nm. We have generated a low-affinity photoconvertible probe, capable of reversibly binding to actin and thus allowing long-term photoactivated localization microscopy of the spine cytoskeleton. Using this approach, we resolve structural parameters of spines and record their long-term dynamics at a temporal resolution below one minute. Furthermore, we have determined changes in the spine morphology in response to pharmacologically induced synaptic activity and quantified the actin redistribution underlying these changes. By combining PALM imaging with quantum dot tracking, we could also simultaneously visualize the cytoskeleton and the spine membrane, allowing us to record complementary information on the morphological changes of the spines at super-resolution

    Large-Scale Evidence for the Effect of the COLIA1 Sp1 Polymorphism on Osteoporosis Outcomes: The GENOMOS Study.

    Get PDF
    Background Osteoporosis and fracture risk are considered to be under genetic control. Extensive work is being performed to identify the exact genetic variants that determine this risk. Previous work has suggested that a G/T polymorphism affecting an Sp1 binding site in the COLIA1 gene is a genetic marker for low bone mineral density (BMD) and osteoporotic fracture, but there have been no very-large-scale studies of COLIA1 alleles in relation to these phenotypes. Methods and Findings Here we evaluated the role of COLIA1 Sp1 alleles as a predictor of BMD and fracture in a multicenter study involving 20,786 individuals from several European countries. At the femoral neck, the average (95% confidence interval [CI]) BMD values were 25 mg/cm2 (CI, 16 to 34 mg/cm2) lower in TT homozygotes than the other genotype groups ( p < 0.001), and a similar difference was observed at the lumbar spine; 21 mg/cm2 (CI, 1 to 42 mg/cm2), ( p = 0.039). These associations were unaltered after adjustment for potential confounding factors. There was no association with fracture overall (odds ratio [OR] = 1.01 [CI, 0.95 to 1.08]) in either unadjusted or adjusted analyses, but there was a non-significant trend for association with vertebral fracture and a nominally significant association with incident vertebral fractures in females (OR = 1.33 [CI, 1.00 to 1.77]) that was independent of BMD, and unaltered in adjusted analyses. Conclusions Allowing for the inevitable heterogeneity between participating teams, this study—which to our knowledge is the largest ever performed in the field of osteoporosis genetics for a single gene—demonstrates that the COLIA1 Sp1 polymorphism is associated with reduced BMD and could predispose to incident vertebral fractures in women, independent of BMD. The associations we observed were modest however, demonstrating the importance of conducting studies that are adequately powered to detect and quantify the effects of common genetic variants on complex diseases

    Development of paediatric non-stage prognosticator guidelines for population-based cancer registries and updates to the 2014 Toronto Paediatric Cancer Stage Guidelines

    Get PDF
    Population-based cancer registries (PBCRs) generate measures of cancer incidence and survival that are essential for cancer surveillance, research, and cancer control strategies. In 2014, the Toronto Paediatric Cancer Stage Guidelines were developed to standardise how PBCRs collect data on the stage at diagnosis for childhood cancer cases. These guidelines have been implemented in multiple jurisdictions worldwide to facilitate international comparative studies of incidence and outcome. Robust stratification by risk also requires data on key non-stage prognosticators (NSPs). Key experts and stakeholders used a modified Delphi approach to establish principles guiding paediatric cancer NSP data collection. With the use of these principles, recommendations were made on which NSPs should be collected for the major malignancies in children. The 2014 Toronto Stage Guidelines were also reviewed and updated where necessary. Wide adoption of the resultant Paediatric NSP Guidelines and updated Toronto Stage Guidelines will enhance the harmonisation and use of childhood cancer data provided by PBCRs

    Pancreatic hyperamylasemia during acute gastroenteritis: incidence and clinical relevance

    Get PDF
    BACKGROUND: Many case reports of acute pancreatitis have been reported but, up to now, pancreatic abnormalities during acute gastroenteritis have not been studied prospectively. OBJECTIVES: To evaluate the incidence and the clinical significance of hyperamylasemia in 507 consecutive adult patients with acute gastroenteritis. METHODS: The clinical significance of hyperamylasemia, related predisposing factors and severity of gastroenteritis were assessed. RESULTS: Hyperamylasemia was detected in 10.2 % of patients studied. Although amylasemia was found over four times the normal values in three cases, the clinical features of acute pancreatitis were recorded in only one case (0.1%). Hyperamylasemia was more likely (17%) where a microorganism could be identified in the stools (p < 0.01). Among patients with positive stool samples, Salmonella spp. and in particular S. enteritidis, was the microorganism most frequently associated with hyperamylasemia [17/84 (20.2 %) and 10/45 (22.2%), respectively], followed by Rotavirus, Clostridium difficile and Campylobacter spp. Patients with hyperamylasemia had more severe gastroenteritis with an increased incidence of fever (80 % vs 50.6 %, O.R. 3.0; P < 0.01), dehydration (18% vs 8.5%; O.R. 2.5; P < 0.05), and a higher mean number of evacuations per day (9.2 vs 7.5; P < 0.05) than those with amylasemia in the normal range. Hyperamylasemia was significantly associated with cholelithiasis, (30.0 % vs 10.7%, O.R. 3.5; P < 0.01) and chronic gastritis or duodenal ulceration (22.0 % vs 10.2%, O.R. 2.4, P < 0.05). CONCLUSIONS: Hyperamylasemia is relatively frequent, and is associated with severe gastroenteritis. However, acute pancreatitis in the setting of acute gastroenteritis, is a rare event
    • 

    corecore