16 research outputs found

    Shoulder muscle endurance: the development of a standardized and reliable protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Shoulder muscle fatigue has been proposed as a possible link to explain the association between repetitive arm use and the development of rotator cuff disorders. To our knowledge, no standardized clinical endurance protocol has been developed to evaluate the effects of muscle fatigue on shoulder function. Such a test could improve clinical examination of individuals with shoulder disorders. Therefore, the purpose of this study was to establish a reliable protocol for objective assessment of shoulder muscle endurance.</p> <p>Methods</p> <p>An endurance protocol was developed on a stationary dynamometer (Biodex System 3). The endurance protocol was performed in isotonic mode with the resistance set at 50% of each subject's peak torque as measured for shoulder external (ER) and internal rotation (IR). Each subject performed 60 continuous repetitions of IR/ER rotation. The endurance protocol was performed by 36 healthy individuals on two separate occasions at least two days apart. Maximal isometric shoulder strength tests were performed before and after the fatigue protocol to evaluate the effects of the endurance protocol and its reliability. Paired <it>t</it>-tests were used to evaluate the reduction in shoulder strength due to the protocol, while intraclass correlation coefficients (ICC) and minimal detectable change (MDC) were used to evaluate its reliability.</p> <p>Results</p> <p>Maximal isometric strength was significantly decreased after the endurance protocol (<it>P </it>< 0.001). The total work performed during the last third of the protocol was significantly less than the first third of the protocol (P < 0.05). The test-retest reliability of the post-fatigue strength measures was excellent (ICC >0.84).</p> <p>Conclusions</p> <p>Changes in muscular performance observed during and after the muscular endurance protocol suggests that the protocol did result in muscular fatigue. Furthermore, this study established that the resultant effects of fatigue of the proposed isotonic protocol were reproducible over time. The protocol was performed without difficulty by all volunteers and took less than 10 minutes to perform, suggesting that it might be feasible for clinical practice. This protocol could be used to induce local muscular fatigue in order to evaluate the effects of fatigue on shoulder kinematics or to evaluate changes in shoulder muscle endurance following rehabilitation.</p

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    The Short Non-Coding Transcriptome of the Protozoan Parasite Trypanosoma cruzi

    Get PDF
    The pathway for RNA interference is widespread in metazoans and participates in numerous cellular tasks, from gene silencing to chromatin remodeling and protection against retrotransposition. The unicellular eukaryote Trypanosoma cruzi is missing the canonical RNAi pathway and is unable to induce RNAi-related processes. To further understand alternative RNA pathways operating in this organism, we have performed deep sequencing and genome-wide analyses of a size-fractioned cDNA library (16–61 nt) from the epimastigote life stage. Deep sequencing generated 582,243 short sequences of which 91% could be aligned with the genome sequence. About 95–98% of the aligned data (depending on the haplotype) corresponded to small RNAs derived from tRNAs, rRNAs, snRNAs and snoRNAs. The largest class consisted of tRNA-derived small RNAs which primarily originated from the 3′ end of tRNAs, followed by small RNAs derived from rRNA. The remaining sequences revealed the presence of 92 novel transcribed loci, of which 79 did not show homology to known RNA classes

    Metabolic engineering of Rhizopus oryzae for the production of platform chemicals

    Get PDF
    Rhizopus oryzae is a filamentous fungus belonging to the Zygomycetes. It is among others known for its ability to produce the sustainable platform chemicals l-(+)-lactic acid, fumaric acid, and ethanol. During glycolysis, all fermentable carbon sources are metabolized to pyruvate and subsequently distributed over the pathways leading to the formation of these products. These platform chemicals are produced in high yields on a wide range of carbon sources. The yields are in excess of 85 % of the theoretical yield for l-(+)-lactic acid and ethanol and over 65 % for fumaric acid. The study and optimization of the metabolic pathways involved in the production of these compounds requires well-developed metabolic engineering tools and knowledge of the genetic makeup of this organism. This review focuses on the current metabolic engineering techniques available for R. oryzae and their application on the metabolic pathways of the main fermentation products

    Does cheating pay : the role of externally supplied momentum on muscular force in resistance exercise

    Full text link
    Our work investigates the use of "external momentum" in the context of hypertrophy-oriented training. This is momentum supplied to the load (such as a dumbbell) used in an exercise by means of action of muscles not inherently involved in the exercise. We challenge the general consensus that the use of such momentum often described as "cheating" is counterproductive. We focus on the use of external momentum in the shoulder lateral raise and adopt a framework whereby exercise execution is simulated on a computer. This is achieved using a physical model of motion which is combined with anthropomorphic measurements and empirical data of muscular recruitment from previous work. The introduction of moderate momentum (producing initial angular velocities around 57.5 s-1) increases the torque of the target muscles even without an increase in the load used. A moderate increase in the load and the use of momentum allows the torque to be increased even further. In contrast, excessive use of momentum results in lower demands on the target muscles, while an excessive increase of the load reduces the total hypertrophy stimulus by virtue of the decreased number of repetitions which can be performed successfully and thus the dramatically shortened time under tension. Our results disprove the conventional belief that the use of external momentum necessarily reduces the overload of the target muscles. A moderate use of external momentum increases both the per-repetition peak torque and the total hypertrophy stimulus in a set.</p
    corecore