3,961 research outputs found

    Quantitative two-dimensional strain mapping of small core-shell FePt@Fe3O4 nanoparticles

    Get PDF
    We report a facile one-pot chemical synthesis of colloidal FePt@Fe3O4 core–shell nanoparticles (NPs) with an average diameter of 8.7 ± 0.4 nm and determine their compositional morphology, microstructure, two-dimensional strain, and magnetic hysteresis. Using various state-of-the-art analytical transmission electron microscopy (TEM) characterization techniques—including high resolution TEM imaging, TEM tomography, scanning TEM-high angle annular dark field imaging, and scanning TEM-energy dispersive x-ray spectroscopy elemental mapping—we gain a comprehensive understanding of the chemical and physical properties of FePt@Fe3O4 NPs. Additional analysis using x-ray photoelectron spectroscopy, x-ray diffraction, and superconducting quantum interference device magnetometry distinguishes the oxide phase and determines the magnetic properties. The geometric phase analysis method is effective in revealing interfacial strain at the core–shell interface. This is of fundamental interest for strain engineering of nanoparticles for desirable applications

    Supersymmetry Flows, Semi-Symmetric Space Sine-Gordon Models And The Pohlmeyer Reduction

    Full text link
    We study the extended supersymmetric integrable hierarchy underlying the Pohlmeyer reduction of superstring sigma models on semi-symmetric superspaces F/G. This integrable hierarchy is constructed by coupling two copies of the homogeneous integrable hierarchy associated to the loop Lie superalgebra extension f of the Lie superalgebra f of F and this is done by means of the algebraic dressing technique and a Riemann-Hilbert factorization problem. By using the Drinfeld-Sokolov procedure we construct explicitly, a set of 2D spin \pm1/2 conserved supercharges generating supersymmetry flows in the phase space of the reduced model. We introduce the bi-Hamiltonian structure of the extended homogeneous hierarchy and show that the two brackets are of the Kostant-Kirillov type on the co-adjoint orbits defined by the light-cone Lax operators L_\pm. By using the second symplectic structure, we show that these supersymmetries are Hamiltonian flows, we compute part of the supercharge algebra and find the supersymmetric field variations they induce. We also show that this second Poisson structure coincides with the canonical Lorentz-Invariant symplectic structure of the WZNW model involved in the Lagrangian formulation of the extended integrable hierarchy, namely, the semi-symmetric space sine-Gordon model (SSSSG), which is the Pohlmeyer reduced action functional for the transverse degrees of freedom of superstring sigma models on the cosets F/G. We work out in some detail the Pohlmeyer reduction of the AdS_2xS^2 and the AdS_3xS^3 superstrings and show that the new conserved supercharges can be related to the supercharges extracted from 2D superspace. In particular, for the AdS_2xS^2 example, they are formally the same.Comment: V2: Two references added, V3: Modifications in section 2.6, V4: Published versio

    Hydrotropism: analysis of the root response to a moisture gradient

    Get PDF
    Hydrotropism is a genuine response of roots to a moisture gradient to avoid drought. An experimental system for the induction of hydrotropic root response in petri dishes was designed by pioneering groups in the field. This system uses split agar plates containing an osmolyte only in a region of the plate in order to generate a water potential gradient. Arabidopsis seedlings are placed on the MS agar plate so that their root tips are near the junction between plain MS medium and the region supplemented with the osmolyte. This elicits a hydrotropic response in Arabidopsis roots that can be measured as the root curvature angle

    Experimental observation of the optical spin transfer torque

    Full text link
    The spin transfer torque is a phenomenon in which angular momentum of a spin polarized electrical current entering a ferromagnet is transferred to the magnetization. The effect has opened a new research field of electrically driven magnetization dynamics in magnetic nanostructures and plays an important role in the development of a new generation of memory devices and tunable oscillators. Optical excitations of magnetic systems by laser pulses have been a separate research field whose aim is to explore magnetization dynamics at short time scales and enable ultrafast spintronic devices. We report the experimental observation of the optical spin transfer torque, predicted theoretically several years ago building the bridge between these two fields of spintronics research. In a pump-and-probe optical experiment we measure coherent spin precession in a (Ga,Mn)As ferromagnetic semiconductor excited by circularly polarized laser pulses. During the pump pulse, the spin angular momentum of photo-carriers generated by the absorbed light is transferred to the collective magnetization of the ferromagnet. We interpret the observed optical spin transfer torque and the magnetization precession it triggers on a quantitative microscopic level. Bringing the spin transfer physics into optics introduces a fundamentally distinct mechanism from the previously reported thermal and non-thermal laser excitations of magnets. Bringing optics into the field of spin transfer torques decreases by several orders of magnitude the timescales at which these phenomena are explored and utilized.Comment: 11 pages, 4 figure

    Epidemiology of vampire bat-transmitted rabies virus in Goiás, central Brazil: re-evaluation based on G-L intergenic region

    Get PDF
    Abstract Background Vampire bat related rabies harms both livestock industry and public health sector in central Brazil. The geographical distributions of vampire bat-transmitted rabies virus variants are delimited by mountain chains. These findings were elucidated by analyzing a high conserved nucleoprotein gene. This study aims to elucidate the detailed epidemiological characters of vampire bat-transmitted rabies virus by phylogenetic methods based on 619-nt sequence including unconserved G-L intergenic region. Findings The vampire bat-transmitted rabies virus isolates divided into 8 phylogenetic lineages in the previous nucleoprotein gene analysis were divided into 10 phylogenetic lineages with significant bootstrap values. The distributions of most variants were reconfirmed to be delimited by mountain chains. Furthermore, variants in undulating areas have narrow distributions and are apparently separated by mountain ridges. Conclusions This study demonstrates that the 619-nt sequence including G-L intergenic region is more useful for a state-level phylogenetic analysis of rabies virus than the partial nucleoprotein gene, and simultaneously that the distribution of vampire bat-transmitted RABV variants tends to be separated not only by mountain chains but also by mountain ridges, thus suggesting that the diversity of vampire bat-transmitted RABV variants was delimited by geographical undulations

    Bounds on 4D Conformal and Superconformal Field Theories

    Get PDF
    We derive general bounds on operator dimensions, central charges, and OPE coefficients in 4D conformal and N=1 superconformal field theories. In any CFT containing a scalar primary phi of dimension d we show that crossing symmetry of implies a completely general lower bound on the central charge c >= f_c(d). Similarly, in CFTs containing a complex scalar charged under global symmetries, we bound a combination of symmetry current two-point function coefficients tau^{IJ} and flavor charges. We extend these bounds to N=1 superconformal theories by deriving the superconformal block expansions for four-point functions of a chiral superfield Phi and its conjugate. In this case we derive bounds on the OPE coefficients of scalar operators appearing in the Phi x Phi* OPE, and show that there is an upper bound on the dimension of Phi* Phi when dim(Phi) is close to 1. We also present even more stringent bounds on c and tau^{IJ}. In supersymmetric gauge theories believed to flow to superconformal fixed points one can use anomaly matching to explicitly check whether these bounds are satisfied.Comment: 47 pages, 9 figures; V2: small corrections and clarification

    Worldwide trends in mortality from biliary tract malignancies

    Get PDF
    BACKGROUND: Intrahepatic cholangiocarcinomas are malignant tumors arising from the intrahepatic biliary tract. The pathogenesis of these tumors remains unknown. Although there is a marked global variation in prevalence, some recent studies have suggested an increase in mortality from intrahepatic cholangiocarcinoma in several regions of low endemicity. As the study of mortality trends may yield clues to possible etiological factors, we analyzed worldwide time trends in mortality from biliary tract malignancies. METHODS: Annual age-standardized rates for individual countries were compiled for deaths from biliary tract malignancies using the WHO database. These data were used to analyze gender and site-specific trends in mortality rates. RESULTS: An increasing trend for mortality from intrahepatic cholangiocarcinoma was noted in most countries. The average estimated annual percentage change (EAPC) in mortality rates for males was 6.9 ± 1.5, and for females was 5.1 ± 1.0. Increased mortality rates were observed in all geographic regions. Within Europe, increases were higher in Western Europe than in Central or Northern Europe. In contrast, mortality rates for extrahepatic biliary tract malignancies showed a decreasing trend in most countries, with an overall average EAPC of -0.3 ± 0.4 for males, but -1.3 ± 0.4 for females. CONCLUSIONS: There has been a marked global increase in mortality from intrahepatic, but not extra-hepatic, biliary tract malignancies

    Tensile strength assay comparing the resistance between two different autologous platelet concentrates (leucocyte-platelet rich fibrin versus advanced-platelet rich fibrin): a pilot study

    Get PDF
    Background: Since the leucocyte-platelet rich fibrin (L-PRF) was published in 2001, many studies have been developed, analyzing its properties, and also verifying new possibilities to improve it. Thereby, it emerges the advanced-platelet rich fibrin (A-PRF) with a protocol that optimizes the properties obtained by the L-PRF. Nonetheless, there is a gap in the literature to landmark the evolutive process concerning the mechanical properties in specific the resistance to tensile strength which consequently may influence the time for membrane degradation. Thus, this study had the goal to compare the resistance to the traction of membranes produced with the original L-PRF and A-PRF protocols, being the first to this direct comparison. Findings: The harvest of blood from a healthy single person, with no history of anticoagulant usage. We performed the protocols described in the literature, within a total of 13 membranes produced for each protocol (n = 26). Afterward, the membranes were prepared and submitted to a traction test assessing the maximal and the average traction achieved for each membrane. The data were analyzed statistically using the unpaired t test. Regarding average traction, A-PRF obtained a value of 0.0288 N mm−2 and L-PRF 0.0192 N mm−2 (p < 0.05 using unpaired t test). For maximal traction, A-PRF obtained 0.0752 N mm−2 and L-PRF 0.0425 N mm−2 (p < 0.05 using unpaired t test). Conclusion: With this study, it was possible to conclude that indeed A-PRF has a significative higher maximal traction score and higher average traction compared to L-PRF, indicating that it had a higher resistance when two opposing forces are applied.info:eu-repo/semantics/publishedVersio
    corecore