158 research outputs found

    Robots that can adapt like animals

    Get PDF
    As robots leave the controlled environments of factories to autonomously function in more complex, natural environments, they will have to respond to the inevitable fact that they will become damaged. However, while animals can quickly adapt to a wide variety of injuries, current robots cannot "think outside the box" to find a compensatory behavior when damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. Here we introduce an intelligent trial and error algorithm that allows robots to adapt to damage in less than two minutes, without requiring self-diagnosis or pre-specified contingency plans. Before deployment, a robot exploits a novel algorithm to create a detailed map of the space of high-performing behaviors: This map represents the robot's intuitions about what behaviors it can perform and their value. If the robot is damaged, it uses these intuitions to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a compensatory behavior that works in spite of the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new technique will enable more robust, effective, autonomous robots, and suggests principles that animals may use to adapt to injury

    A Role for ATF2 in Regulating MITF and Melanoma Development

    Get PDF
    The transcription factor ATF2 has been shown to attenuate melanoma susceptibility to apoptosis and to promote its ability to form tumors in xenograft models. To directly assess ATF2's role in melanoma development, we crossed a mouse melanoma model (Nras(Q61K)::Ink4a⁻/⁻) with mice expressing a transcriptionally inactive form of ATF2 in melanocytes. In contrast to 7/21 of the Nras(Q61K)::Ink4a⁻/⁻ mice, only 1/21 mice expressing mutant ATF2 in melanocytes developed melanoma. Gene expression profiling identified higher MITF expression in primary melanocytes expressing transcriptionally inactive ATF2. MITF downregulation by ATF2 was confirmed in the skin of Atf2⁻/⁻ mice, in primary human melanocytes, and in 50% of human melanoma cell lines. Inhibition of MITF transcription by MITF was shown to be mediated by ATF2-JunB-dependent suppression of SOX10 transcription. Remarkably, oncogenic BRAF (V600E)-dependent focus formation of melanocytes on soft agar was inhibited by ATF2 knockdown and partially rescued upon shMITF co-expression. On melanoma tissue microarrays, a high nuclear ATF2 to MITF ratio in primary specimens was associated with metastatic disease and poor prognosis. Our findings establish the importance of transcriptionally active ATF2 in melanoma development through fine-tuning of MITF expression

    Elevation in Body Temperature to Fever Range Enhances and Prolongs Subsequent Responsiveness of Macrophages to Endotoxin Challenge

    Get PDF
    Macrophages are often considered the sentries in innate immunity, sounding early immunological alarms, a function which speeds the response to infection. Compared to the large volume of studies on regulation of macrophage function by pathogens or cytokines, relatively little attention has been devoted to the role of physical parameters such as temperature. Given that temperature is elevated during fever, a long-recognized cardinal feature of inflammation, it is possible that macrophage function is responsive to thermal signals. To explore this idea, we used LPS to model an aseptic endotoxin-induced inflammatory response in BALB/c mice and found that raising mouse body temperature by mild external heat treatment significantly enhances subsequent LPS-induced release of TNF-α into the peritoneal fluid. It also reprograms macrophages, resulting in sustained subsequent responsiveness to LPS, i.e., this treatment reduces “endotoxin tolerance” in vitro and in vivo. At the molecular level, elevating body temperature of mice results in a increase in LPS-induced downstream signaling including enhanced phosphorylation of IKK and IκB, NF-κB nuclear translocation and binding to the TNF-α promoter in macrophages upon secondary stimulation. Mild heat treatment also induces expression of HSP70 and use of HSP70 inhibitors (KNK437 or Pifithrin-µ) largely abrogates the ability of the thermal treatment to enhance TNF-α, suggesting that the induction of HSP70 is important for mediation of thermal effects on macrophage function. Collectively, these results support the idea that there has been integration between the evolution of body temperature regulation and macrophage function that could help to explain the known survival benefits of fever in organisms following infection

    Design, rationale, and baseline characteristics of a cluster randomized controlled trial of pay for performance for hypertension treatment: study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite compelling evidence of the benefits of treatment and well-accepted guidelines for treatment, hypertension is controlled in less than one-half of United States citizens.</p> <p>Methods/design</p> <p>This randomized controlled trial tests whether explicit financial incentives promote the translation of guideline-recommended care for hypertension into clinical practice and improve blood pressure (BP) control in the primary care setting. Using constrained randomization, we assigned 12 Veterans Affairs hospital outpatient clinics to four study arms: physician-level incentive; group-level incentive; combination of physician and group incentives; and no incentives (control). All participants at the hospital (cluster) were assigned to the same study arm. We enrolled 83 full-time primary care physicians and 42 non-physician personnel. The intervention consisted of an educational session about guideline-recommended care for hypertension, five audit and feedback reports, and five disbursements of incentive payments. Incentive payments rewarded participants for chart-documented use of guideline-recommended antihypertensive medications, BP control, and appropriate responses to uncontrolled BP during a prior four-month performance period over the 20-month intervention. To identify potential unintended consequences of the incentives, the study team interviewed study participants, as well as non-participant primary care personnel and leadership at study sites. Chart reviews included data collection on quality measures not related to hypertension. To evaluate the persistence of the effect of the incentives, the study design includes a washout period.</p> <p>Discussion</p> <p>We briefly describe the rationale for the interventions being studied, as well as the major design choices. Rigorous research designs such as the one described here are necessary to determine whether performance-based payment arrangements such as financial incentives result in meaningful quality improvements.</p> <p>Trial Registration</p> <p><url>http://www.clinicaltrials.gov</url><a href="http://www.clinicaltrials.gov/ct2/show/NCT00302718">NCT00302718</a></p

    Development and Validity of the Rating-of-Fatigue Scale

    Get PDF
    Objective: The purpose of these experiments was to develop a rating-of-fatigue (ROF) scale capable of tracking the intensity of perceived fatigue in a variety of contexts. Methods: Four experiments were carried out. The first provided the evidential basis for the construction of the ROF scale. The second tested the face validity of the ROF, and the third tested the convergent and divergent validity of the ROF scale during ramped cycling to exhaustion and 30 min of resting recovery. The final experiment tested the convergent validity of the ROF scale with time of day and physical activity (accelerometer counts) across a whole week. Results: Modal selections of descriptions and diagrams at different levels of exertion and recovery were found during Experiment 1 upon which the ROF scale was constructed and finalised. In Experiment 2, a high level of face validity was indicated, in that ROF was reported to represent fatigue rather than exertion. Descriptor and diagrammatic elements of ROF reportedly added to the coherence and ease of use of the scale. In Experiment 3, high convergence between ROF and various physiological measures were found during exercise and recovery (heart rate, blood lactate concentration, oxygen uptake, carbon dioxide production, respiratory exchange ratio and ventilation rate were all P < 0.001). During ramped cycling to exhaustion ROF and RPE did correspond (P < 0.0001) but not during recovery, demonstrating discriminant validity. Experiment 4 found ROF to correspond with waking time during each day (Mon–Sun all P < 0.0001) and with physical activity (accelerometer count) (Mon–Sun all P < 0.001). Conclusions: The ROF scale has good face validity and high levels of convergent validity during ramped cycling to exhaustion, resting recovery and daily living activities. The ROF scale has both theoretical and applied potential in understanding changes in fatigue in a variety of contexts

    Multi-Level Targeting of the Phosphatidylinositol-3-Kinase Pathway in Non-Small Cell Lung Cancer Cells

    Get PDF
    Introduction: We assessed expression of p85 and p110a PI3K subunits in non-small cell lung cancer (NSCLC) specimens and the association with mTOR expression, and studied effects of targeting the PI3K/AKT/mTOR pathway in NSCLC cell lines. Methods: Using Automated Quantitative Analysis we quantified expression of PI3K subunits in two cohorts of 190 and 168 NSCLC specimens and correlated it with mTOR expression. We studied effects of two PI3K inhibitors, LY294002 and NVP-BKM120, alone and in combination with rapamycin in 6 NSCLC cell lines. We assessed activity of a dual PI3K/mTOR inhibitor

    Integrative Analysis of Epigenetic Modulation in Melanoma Cell Response to Decitabine: Clinical Implications

    Get PDF
    Decitabine, an epigenetic modifier that reactivates genes otherwise suppressed by DNA promoter methylation, is effective for some, but not all cancer patients, especially those with solid tumors. It is commonly recognized that to overcome resistance and improve outcome, treatment should be guided by tumor biology, which includes genotype, epigenotype, and gene expression profile. We therefore took an integrative approach to better understand melanoma cell response to clinically relevant dose of decitabine and identify complementary targets for combined therapy. We employed eight different melanoma cell strains, determined their growth, apoptotic and DNA damage responses to increasing doses of decitabine, and chose a low, clinically relevant drug dose to perform whole-genome differential gene expression, bioinformatic analysis, and protein validation studies. The data ruled out the DNA damage response, demonstrated the involvement of p21Cip1 in a p53-independent manner, identified the TGFβ pathway genes CLU and TGFBI as markers of sensitivity to decitabine and revealed an effect on histone modification as part of decitabine-induced gene expression. Mutation analysis and knockdown by siRNA implicated activated β-catenin/MITF, but not BRAF, NRAS or PTEN mutations as a source for resistance. The importance of protein stability predicted from the results was validated by the synergistic effect of Bortezomib, a proteasome inhibitor, in enhancing the growth arrest of decitabine in otherwise resistant melanoma cells. Our integrative analysis show that improved therapy can be achieved by comprehensive analysis of cancer cells, identified biomarkers for patient's selection and monitoring response, as well as targets for improved combination therapy

    Identifying educator behaviours for high quality verbal feedback in health professions education: literature review and expert refinement

    Get PDF
    Background Health professions education is characterised by work-based learning and relies on effective verbal feedback. However the literature reports problems in feedback practice, including lack of both learner engagement and explicit strategies for improving performance. It is not clear what constitutes high quality, learner-centred feedback or how educators can promote it. We hoped to enhance feedback in clinical practice by distinguishing the elements of an educator’s role in feedback considered to influence learner outcomes, then develop descriptions of observable educator behaviours that exemplify them. Methods An extensive literature review was conducted to identify i) information substantiating specific components of an educator’s role in feedback asserted to have an important influence on learner outcomes and ii) verbal feedback instruments in health professions education, that may describe important educator activities in effective feedback. This information was used to construct a list of elements thought to be important in effective feedback. Based on these elements, descriptions of observable educator behaviours that represent effective feedback were developed and refined during three rounds of a Delphi process and a face-to-face meeting with experts across the health professions and education. Results The review identified more than 170 relevant articles (involving health professions, education, psychology and business literature) and ten verbal feedback instruments in health professions education (plus modified versions). Eighteen distinct elements of an educator’s role in effective feedback were delineated. Twenty five descriptions of educator behaviours that align with the elements were ratified by the expert panel. Conclusions This research clarifies the distinct elements of an educator’s role in feedback considered to enhance learner outcomes. The corresponding set of observable educator behaviours aim to describe how an educator could engage, motivate and enable a learner to improve. This creates the foundation for developing a method to systematically evaluate the impact of verbal feedback on learner performance
    corecore