8,641 research outputs found
Detecting Large Concept Extensions for Conceptual Analysis
When performing a conceptual analysis of a concept, philosophers are
interested in all forms of expression of a concept in a text---be it direct or
indirect, explicit or implicit. In this paper, we experiment with topic-based
methods of automating the detection of concept expressions in order to
facilitate philosophical conceptual analysis. We propose six methods based on
LDA, and evaluate them on a new corpus of court decision that we had annotated
by experts and non-experts. Our results indicate that these methods can yield
important improvements over the keyword heuristic, which is often used as a
concept detection heuristic in many contexts. While more work remains to be
done, this indicates that detecting concepts through topics can serve as a
general-purpose method for at least some forms of concept expression that are
not captured using naive keyword approaches
Influence of Seabed Morphology and Substrate Composition On Mass-Transport Flow Processes and Pathways: Insights From the Magdalena Fan, Offshore Colombia
Although the effects of interactions between turbidity currents and the seabed have been widely studied, the roles of substrate and bathymetry on the emplacement of mass-transport complexes (MTCs) remain poorly constrained. This study investigates the effect of bathymetric variability and substrate heterogeneity on the distribution, morphology, and internal characteristics of nine MTCs imaged within a 3D seismic volume in the southern Magdalena Fan, offshore Colombia. The MTCs overlie substrate units composed mainly of channel–levee-complex sets, with subsidiary deposits of MTCs. MTC dispersal was influenced by tectonic relief, associated with a thin-skinned, deep-water fold-and-thrust belt, and by depositional relief, associated with the underlying channel–levee-complex sets; it was the former that exerted the first-order control on the location of mass-transport pathways. Channel–levee-complex sets channelized, diverted, or blocked mass flows, with the style of response largely controlled by their orientation with respect to the direction of the incoming flow and by the height of the levees with respect to flow thickness. MTC erosion can be relatively deep above channel-fill deposits, whereas more subtle erosional morphologies are observed above adjacent levee units. In the largest MTC, the distribution of the seismic facies is well imaged, being influenced by the underlying bathymetry, with internal horizontal contraction occurring updip of bathymetric highs, erosion and bypass predominating above higher gradient slopes, and increased disaggregation characterizing the margins. Hence, bathymetric irregularities and substrate heterogeneity together influence the pathways, geometries, and internal characteristics of MTCs, which could in turn influence flow rheology, runout distances, the presence and continuity of underlying reservoirs, and the capacity of MTCs to act as either hydrocarbon seals or reservoirs
Influence of Seabed Morphology and Substrate Composition On Mass-Transport Flow Processes and Pathways: Insights From the Magdalena Fan, Offshore Colombia
Although the effects of interactions between turbidity currents and the seabed have been widely studied, the roles of substrate and bathymetry on the emplacement of mass-transport complexes (MTCs) remain poorly constrained. This study investigates the effect of bathymetric variability and substrate heterogeneity on the distribution, morphology, and internal characteristics of nine MTCs imaged within a 3D seismic volume in the southern Magdalena Fan, offshore Colombia. The MTCs overlie substrate units composed mainly of channel–levee-complex sets, with subsidiary deposits of MTCs. MTC dispersal was influenced by tectonic relief, associated with a thin-skinned, deep-water fold-and-thrust belt, and by depositional relief, associated with the underlying channel–levee-complex sets; it was the former that exerted the first-order control on the location of mass-transport pathways. Channel–levee-complex sets channelized, diverted, or blocked mass flows, with the style of response largely controlled by their orientation with respect to the direction of the incoming flow and by the height of the levees with respect to flow thickness. MTC erosion can be relatively deep above channel-fill deposits, whereas more subtle erosional morphologies are observed above adjacent levee units. In the largest MTC, the distribution of the seismic facies is well imaged, being influenced by the underlying bathymetry, with internal horizontal contraction occurring updip of bathymetric highs, erosion and bypass predominating above higher gradient slopes, and increased disaggregation characterizing the margins. Hence, bathymetric irregularities and substrate heterogeneity together influence the pathways, geometries, and internal characteristics of MTCs, which could in turn influence flow rheology, runout distances, the presence and continuity of underlying reservoirs, and the capacity of MTCs to act as either hydrocarbon seals or reservoirs
Contralateral manual compensation for velocity-dependent force perturbations
It is not yet clear how the temporal structure of a voluntary action is coded allowing coordinated bimanual responses. This study focuses on the adaptation to and compensation for a force profile presented to one stationary arm which is proportional to the velocity of the other moving arm. We hypothesised that subjects would exhibit predictive coordinative responses which would co-vary with the state of the moving arm. Our null hypothesis is that they develop a time-dependent template of forces appropriate to compensate for the imposed perturbation. Subjects were trained to make 500 ms duration reaching movements with their dominant right arm to a visual target. A force generated with a robotic arm that was proportional to the velocity of the moving arm and perpendicular to movement direction acted on their stationary left hand, either at the same time as the movement or delayed by 250 or 500 ms. Subjects rapidly learnt to minimise the final end-point error. In the delay conditions, the left hand moved in advance of the onset of the perturbing force. In test conditions with faster or slower movement of the right hand, the predictive actions of the left hand co-varied with movement speed. Compensation for movement-related forces appeared to be predictive but not based on an accurate force profile that was equal and opposite to the imposed perturbatio
Using the UM dynamical cores to reproduce idealised 3-D flows
This is the final version of the article. Available from the publisher via the DOI in this record.Published by Copernicus Publications on behalf of the European Geosciences UnionWe demonstrate that both the current (New Dynamics), and next generation (ENDGame) dynamical cores of the UK Met Office global circulation model, the UM, reproduce consistently, the long-term, large-scale flows found in several published idealised tests. The cases presented are the Held-Suarez test, a simplified model of Earth (including a stratosphere), and a hypothetical tidally locked Earth. Furthermore, we show that using simplifications to the dynamical equations, which are expected to be justified for the physical domains and flow regimes we have studied, and which are supported by the ENDGame dynamical core, also produces matching long-term, large-scale flows. Finally, we present evidence for differences in the detail of the planetary flows and circulations resulting from improvements in the ENDGame formulation over New Dynamics.We would like to thank Paul Ullrich and
Kevin Heng for their valuable comments, when reviewing this
manuscript. We would also like to thank Tom Melvin for his
expert advice, and both Charline Marzin and Douglas Boyd for
technical help. This work is supported by the European Research
Council under the European Community’s Seventh Framework
Programme (FP7/2007-2013 Grant Agreement no. 247060) and
by the Consolidated STFC grant ST/J001627/1. This work is also
partly supported by the Royal Society award WM090065. The
calculations for this paper were performed on the DiRAC Facility
jointly funded by STFC, the Large Facilities Capital Fund of BIS,
and the University of Exeter
Hybridization between wild and cultivated potato species in the Peruvian Andes and biosafety implications for deployment of GM potatoes
The nature and extent of past and current hybridization between cultivated potato and wild relatives in nature is of interest to crop evolutionists, taxonomists, breeders and recently to molecular biologists because of the possibilities of inverse gene flow in the deployment of genetically-modified (GM) crops. This research proves that natural hybridization occurs in areas of potato diversity in the Andes, the possibilities for survival of these new hybrids, and shows a possible way forward in case of GM potatoes should prove advantageous in such areas
Combustion in thermonuclear supernova explosions
Type Ia supernovae are associated with thermonuclear explosions of white
dwarf stars. Combustion processes convert material in nuclear reactions and
release the energy required to explode the stars. At the same time, they
produce the radioactive species that power radiation and give rise to the
formation of the observables. Therefore, the physical mechanism of the
combustion processes, as reviewed here, is the key to understand these
astrophysical events. Theory establishes two distinct modes of propagation for
combustion fronts: subsonic deflagrations and supersonic detonations. Both are
assumed to play an important role in thermonuclear supernovae. The physical
nature and theoretical models of deflagrations and detonations are discussed
together with numerical implementations. A particular challenge arises due to
the wide range of spatial scales involved in these phenomena. Neither the
combustion waves nor their interaction with fluid flow and instabilities can be
directly resolved in simulations. Substantial modeling effort is required to
consistently capture such effects and the corresponding techniques are
discussed in detail. They form the basis of modern multidimensional
hydrodynamical simulations of thermonuclear supernova explosions. The problem
of deflagration-to-detonation transitions in thermonuclear supernova explosions
is briefly mentioned.Comment: Author version of chapter for 'Handbook of Supernovae,' edited by A.
Alsabti and P. Murdin, Springer. 24 pages, 4 figure
A systematic review of strategies to recruit and retain primary care doctors
Background There is a workforce crisis in primary care. Previous research has looked at the reasons underlying recruitment and retention problems, but little research has looked at what works to improve recruitment and retention. The aim of this systematic review is to evaluate interventions and strategies used to recruit and retain primary care doctors internationally. Methods A systematic review was undertaken. MEDLINE, EMBASE, CENTRAL and grey literature were searched from inception to January 2015.Articles assessing interventions aimed at recruiting or retaining doctors in high income countries, applicable to primary care doctors were included. No restrictions on language or year of publication. The first author screened all titles and abstracts and a second author screened 20%. Data extraction was carried out by one author and checked by a second. Meta-analysis was not possible due to heterogeneity. Results 51 studies assessing 42 interventions were retrieved. Interventions were categorised into thirteen groups: financial incentives (n=11), recruiting rural students (n=6), international recruitment (n=4), rural or primary care focused undergraduate placements (n=3), rural or underserved postgraduate training (n=3), well-being or peer support initiatives (n=3), marketing (n=2), mixed interventions (n=5), support for professional development or research (n=5), retainer schemes (n=4), re-entry schemes (n=1), specialised recruiters or case managers (n=2) and delayed partnerships (n=2). Studies were of low methodological quality with no RCTs and only 15 studies with a comparison group. Weak evidence supported the use of postgraduate placements in underserved areas, undergraduate rural placements and recruiting students to medical school from rural areas. There was mixed evidence about financial incentives. A marketing campaign was associated with lower recruitment. Conclusions This is the first systematic review of interventions to improve recruitment and retention of primary care doctors. Although the evidence base for recruiting and care doctors is weak and more high quality research is needed, this review found evidence to support undergraduate and postgraduate placements in underserved areas, and selective recruitment of medical students. Other initiatives covered may have potential to improve recruitment and retention of primary care practitioners, but their effectiveness has not been established
Pathological Features of Breast Cancer seen in Northwestern Tanzania: A Nine Years Retrospective Study.
Breast cancer is more common in Western Countries compared to African populations. However in African population, it appears that the disease tends to be more aggressive and occurring at a relatively young age at the time of presentation. The aim of this study was to describe the trend of Breast Cancer in Northwestern Tanzania. This was a retrospective study which involved all cases of breast cancer diagnosed histologically at Bugando Medical Center from 2002 to 2010. Histological results and slides were retrieved from the records in the Pathology department, clinical information and demographic data for patients were retrieved from surgical wards and department of medical records. Histology slides were re-evaluated for the histological type, grade (By modified Bloom-Richardson score), and presence of necrosis and skin involvement. Data was entered and analyzed by SPSS computer software version 15. There were 328 patients histologically confirmed to have breast cancer, the mean age at diagnosis was 48.7 years (+/- 13.1). About half of the patients (52.4%) were below 46 years of age, and this group of patients had significantly higher tendency for lymph node metastasis (p = 0.012). The tumor size ranged from 1 cm to 18 cm in diameter with average (mean) of 5.5 cm (+/- 2.5), and median size of 6 cm. Size of the tumor (above 6 cm in diameter) and presence of necrosis within the tumor was significantly associated with high rate of lymph node metastasis (p = 0.000). Of all patients, 64% were at clinical stage III (specifically IIIB) and 70.4% had lymph node metastasis at the time of diagnosis. Only 4.3% of the patients were in clinical stage I at the time of diagnosis. Majority of the patients had invasive ductal carcinoma (91.5%) followed by mucinous carcinoma (5.2%), Invasive lobular carcinoma (3%) and in situ ductal carcinoma (0.3%). In all patients, 185 (56.4%) had tumor with histological grade 3. Breast cancer in this region show a trend towards relative young age at diagnosis with advanced stage at diagnosis and high rate of lymph node metastasis. Poor Referral system, lack of screening programs and natural aggressive biological behavior of tumor may contribute to advanced disease at the time of diagnosis
Beyond Gross-Pitaevskii Mean Field Theory
A large number of effects related to the phenomenon of Bose-Einstein
Condensation (BEC) can be understood in terms of lowest order mean field
theory, whereby the entire system is assumed to be condensed, with thermal and
quantum fluctuations completely ignored. Such a treatment leads to the
Gross-Pitaevskii Equation (GPE) used extensively throughout this book. Although
this theory works remarkably well for a broad range of experimental parameters,
a more complete treatment is required for understanding various experiments,
including experiments with solitons and vortices. Such treatments should
include the dynamical coupling of the condensate to the thermal cloud, the
effect of dimensionality, the role of quantum fluctuations, and should also
describe the critical regime, including the process of condensate formation.
The aim of this Chapter is to give a brief but insightful overview of various
recent theories, which extend beyond the GPE. To keep the discussion brief,
only the main notions and conclusions will be presented. This Chapter
generalizes the presentation of Chapter 1, by explicitly maintaining
fluctuations around the condensate order parameter. While the theoretical
arguments outlined here are generic, the emphasis is on approaches suitable for
describing single weakly-interacting atomic Bose gases in harmonic traps.
Interesting effects arising when condensates are trapped in double-well
potentials and optical lattices, as well as the cases of spinor condensates,
and atomic-molecular coupling, along with the modified or alternative theories
needed to describe them, will not be covered here.Comment: Review Article (19 Pages) - To appear in 'Emergent Nonlinear
Phenomena in Bose-Einstein Condensates: Theory and Experiment', Edited by
P.G. Kevrekidis, D.J. Frantzeskakis and R. Carretero-Gonzalez (Springer
Verlag
- …
