191 research outputs found
Critical Trapped Surfaces Formation in the Collision of Ultrarelativistic Charges in (A)dS
We study the formation of marginally trapped surfaces in the head-on
collision of two ultrarelativistic charges in space-time. The metric of
ultrarelativistic charged particles in is obtained by boosting
Reissner-Nordstr\"om space-time to the speed of light. We show that
formation of trapped surfaces on the past light cone is only possible when
charge is below certain critical - situation similar to the collision of two
ultrarelativistic charges in Minkowski space-time. This critical value depends
on the energy of colliding particles and the value of a cosmological constant.
There is richer structure of critical domains in case. In this case
already for chargeless particles there is a critical value of the cosmological
constant only below which trapped surfaces formation is possible. Appearance of
arbitrary small nonzero charge significantly changes the physical picture.
Critical effect which has been observed in the neutral case does not take place
more. If the value of the charge is not very large solution to the equation on
trapped surface exists for any values of cosmological radius and energy density
of shock waves. Increasing of the charge leads to decrease of the trapped
surface area, and at some critical point the formation of trapped surfaces of
the type mentioned above becomes impossible.Comment: 30 pages, Latex, 7 figures, Refs. added and typos correcte
Isolated and dynamical horizons and their applications
Over the past three decades, black holes have played an important role in
quantum gravity, mathematical physics, numerical relativity and gravitational
wave phenomenology. However, conceptual settings and mathematical models used
to discuss them have varied considerably from one area to another. Over the
last five years a new, quasi-local framework was introduced to analyze diverse
facets of black holes in a unified manner. In this framework, evolving black
holes are modeled by dynamical horizons and black holes in equilibrium by
isolated horizons. We review basic properties of these horizons and summarize
applications to mathematical physics, numerical relativity and quantum gravity.
This paradigm has led to significant generalizations of several results in
black hole physics. Specifically, it has introduced a more physical setting for
black hole thermodynamics and for black hole entropy calculations in quantum
gravity; suggested a phenomenological model for hairy black holes; provided
novel techniques to extract physics from numerical simulations; and led to new
laws governing the dynamics of black holes in exact general relativity.Comment: 77 pages, 12 figures. Typos and references correcte
Plant lectins: the ties that bind in root symbiosis and plant defense
Lectins are a diverse group of carbohydrate-binding proteins that are found within and associated with organisms from all kingdoms of life. Several different classes of plant lectins serve a diverse array of functions. The most prominent of these include participation in plant defense against predators and pathogens and involvement in symbiotic interactions between host plants and symbiotic microbes, including mycorrhizal fungi and nitrogen-fixing rhizobia. Extensive biological, biochemical, and molecular studies have shed light on the functions of plant lectins, and a plethora of uncharacterized lectin genes are being revealed at the genomic scale, suggesting unexplored and novel diversity in plant lectin structure and function. Integration of the results from these different types of research is beginning to yield a more detailed understanding of the function of lectins in symbiosis, defense, and plant biology in general
PPARα Is Essential for Microparticle-Induced Differentiation of Mouse Bone Marrow-Derived Endothelial Progenitor Cells and Angiogenesis
BACKGROUND: Bone marrow-derived endothelial progenitor cells (EPCs) are critical for neovascularization. We hypothesized that microparticles (MPs), small fragments generated from the plasma membrane, can activate angiogenic programming of EPCs. METHODOLOGY/PRINCIPAL FINDINGS: We studied the effects of MPs obtained from wild type (MPs(PPARalpha+/+)) and knock-out (MPs(PPARalpha-/-)) mice on EPC differentiation and angiogenesis. Bone marrow-derived cells were isolated from WT or KO mice and were cultured in the presence of MPs(PPARalpha+/+) or MPs(PPARalpha-/-) obtained from blood of mice. Only MPs(PPARalpha+/+) harboring PPAR(alpha) significantly increased EPC, but not monocytic, differentiation. Bone marrow-derived cells treated with MPs(PPARalpha+/+) displayed increased expression of pro-angiogenic genes and increased in vivo angiogenesis. MPs(PPARalpha+/+) increased capillary-like tube formation of endothelial cells that was associated with enhanced expressions of endothelial cell-specific markers. Finally, the effects of MPs(PPARalpha+/+) were mediated by NF-kappaB-dependent mechanisms. CONCLUSIONS/SIGNIFICANCE: Our results underscore the obligatory role of PPARalpha carried by MPs for EPC differentiation and angiogenesis. PPARalpha-NF-kappaB-Akt pathways may play a pivotal stimulatory role for neovascularization, which may, at least in part, be mediated by bone marrow-derived EPCs. Improvement of EPC differentiation may represent a useful strategy during reparative neovascularization
Challenges in Using Cultured Primary Rodent Hepatocytes or Cell Lines to Study Hepatic HDL Receptor SR-BI Regulation by Its Cytoplasmic Adaptor PDZK1
Background:
PDZK1 is a four PDZ-domain containing cytoplasmic protein that binds to a variety of membrane proteins via their C-termini and can influence the abundance, localization and/or function of its target proteins. One of these targets in hepatocytes in vivo is the HDL receptor SR-BI. Normal hepatic expression of SR-BI protein requires PDZK1 - <5% of normal hepatic SR-BI is seen in the livers of PDZK1 knockout mice. Progress has been made in identifying features of PDZK1 required to control hepatic SR-BI in vivo using hepatic expression of wild-type and mutant forms of PDZK1 in wild-type and PDZK1 KO transgenic mice. Such in vivo studies are time consuming and expensive, and cannot readily be used to explore many features of the underlying molecular and cellular mechanisms.
Methodology/Principal Findings:
Here we have explored the potential to use either primary rodent hepatocytes in culture using 2D collagen gels with newly developed optimized conditions or PDZK1/SR-BI co-transfected cultured cell lines (COS, HEK293) for such studies. SR-BI and PDZK1 protein and mRNA expression levels fell rapidly in primary hepatocyte cultures, indicating this system does not adequately mimic hepatocytes in vivo for analysis of the PDZK1 dependence of SR-BI. Although PDZK1 did alter SR-BI protein expression in the cell lines, its influence was independent of SR-BI’s C-terminus, and thus is not likely to occur via the same mechanism as that which occurs in hepatocytes in vivo.
Conclusions/Significance:
Caution must be exercised in using primary hepatocytes or cultured cell lines when studying the mechanism underlying the regulation of hepatic SR-BI by PDZK1. It may be possible to use SR-BI and PDZK1 expression as sensitive markers for the in vivo-like state of hepatocytes to further improve primary hepatocyte cell culture conditions.National Institutes of Health (U.S.) (Grant HL052212)National Institutes of Health (U.S.) (Grant HL066105)National Institutes of Health (U.S.) (Grant ES015241)National Institutes of Health (U.S.) (Grant GM068762
Holographic Calculations of Renyi Entropy
We extend the approach of Casini, Huerta and Myers to a new calculation of
the Renyi entropy of a general CFT in d dimensions with a spherical entangling
surface, in terms of certain thermal partition functions. We apply this
approach to calculate the Renyi entropy in various holographic models. Our
results indicate that in general, the Renyi entropy will be a complicated
nonlinear function of the central charges and other parameters which
characterize the CFT. We also exhibit the relation between this new thermal
calculation and a conventional calculation of the Renyi entropy where a twist
operator is inserted on the spherical entangling surface. The latter insight
also allows us to calculate the scaling dimension of the twist operators in the
holographic models.Comment: 71 pages, 6 figure
Widespread Presence of Human BOULE Homologs among Animals and Conservation of Their Ancient Reproductive Function
Sex-specific traits that lead to the production of dimorphic gametes, sperm in males and eggs in females, are fundamental for sexual reproduction and accordingly widespread among animals. Yet the sex-biased genes that underlie these sex-specific traits are under strong selective pressure, and as a result of adaptive evolution they often become divergent. Indeed out of hundreds of male or female fertility genes identified in diverse organisms, only a very small number of them are implicated specifically in reproduction in more than one lineage. Few genes have exhibited a sex-biased, reproductive-specific requirement beyond a given phylum, raising the question of whether any sex-specific gametogenesis factors could be conserved and whether gametogenesis might have evolved multiple times. Here we describe a metazoan origin of a conserved human reproductive protein, BOULE, and its prevalence from primitive basal metazoans to chordates. We found that BOULE homologs are present in the genomes of representative species of each of the major lineages of metazoans and exhibit reproductive-specific expression in all species examined, with a preponderance of male-biased expression. Examination of Boule evolution within insect and mammalian lineages revealed little evidence for accelerated evolution, unlike most reproductive genes. Instead, purifying selection was the major force behind Boule evolution. Furthermore, loss of function of mammalian Boule resulted in male-specific infertility and a global arrest of sperm development remarkably similar to the phenotype in an insect boule mutation. This work demonstrates the conservation of a reproductive protein throughout eumetazoa, its predominant testis-biased expression in diverse bilaterian species, and conservation of a male gametogenic requirement in mice. This shows an ancient gametogenesis requirement for Boule among Bilateria and supports a model of a common origin of spermatogenesis
Transcription-replication conflicts: How they occur and how they are resolved
The frequent occurrence of transcription and DNA replication in cells results in many encounters, and thus conflicts, between the transcription and replication machineries. These conflicts constitute a major intrinsic source of genome instability, which is a hallmark of cancer cells. How the replication machinery progresses along a DNA molecule occupied by an RNA polymerase is an old question. Here we review recent data on the biological relevance of transcription-replication conflicts, and the factors and mechanisms that are involved in either preventing or resolving them, mainly in eukaryotes. On the basis of these data, we provide our current view of how transcription can generate obstacles to replication, including torsional stress and non-B DNA structures, and of the different cellular processes that have evolved to solve them
Regeneration of myelin sheaths of normal length and thickness in the zebrafish CNS correlates with growth of axons in caliber
Demyelination is observed in numerous diseases of the central nervous system, including multiple sclerosis (MS). However, the endogenous regenerative process of remyelination can replace myelin lost in disease, and in various animal models. Unfortunately, the process of remyelination often fails, particularly with ageing. Even when remyelination occurs, it is characterised by the regeneration of myelin sheaths that are abnormally thin and short. This imperfect remyelination is likely to have implications for the restoration of normal circuit function and possibly the optimal metabolic support of axons. Here we describe a larval zebrafish model of demyelination and remyelination. We employ a drug-inducible cell ablation system with which we can consistently ablate 2/3rds of oligodendrocytes in the larval zebrafish spinal cord. This leads to a concomitant demyelination of 2/3rds of axons in the spinal cord, and an innate immune response over the same time period. We find restoration of the normal number of oligodendrocytes and robust remyelination approximately two weeks after induction of cell ablation, whereby myelinated axon number is restored to control levels. Remarkably, we find that myelin sheaths of normal length and thickness are regenerated during this time. Interestingly, we find that axons grow significantly in caliber during this period of remyelination. This suggests the possibility that the active growth of axons may stimulate the regeneration of myelin sheaths of normal dimensions
- …