34 research outputs found

    The topology of connections between rat prefrontal and temporal cortices

    Get PDF
    Understanding the structural organization of the prefrontal cortex (PFC) is an important step toward determining its functional organization. Here we investigated the organization of PFC using different neuronal tracers. We injected retrograde (Fluoro-Gold, 100 nl) and anterograde [Biotinylated dextran amine (BDA) or Fluoro-Ruby, 100 nl] tracers into sites within PFC subdivisions (prelimbic, ventral orbital, ventrolateral orbital, dorsolateral orbital) along a coronal axis within PFC. At each injection site one injection was made of the anterograde tracer and one injection was made of the retrograde tracer. The projection locations of retrogradely labeled neurons and anterogradely labeled axon terminals were then analyzed in the temporal cortex: area Te, entorhinal and perirhinal cortex. We found evidence for an ordering of both the anterograde (anterior-posterior, dorsal-ventral, and medial-lateral axes: p < 0.001) and retrograde (anterior-posterior, dorsal-ventral, and medial-lateral axes: p < 0.001) connections of PFC. We observed that anterograde and retrograde labeling in ipsilateral temporal cortex (i.e., PFC inputs and outputs) often occurred reciprocally (i.e., the same brain region, such as area 35d in perirhinal cortex, contained anterograde and retrograde labeling). However, often the same specific columnar temporal cortex regions contained only either labeling of retrograde or anterograde tracer, indicating that PFC inputs and outputs are frequently non-matched

    Individual differences in first- and second-order temporal judgment

    Get PDF
    The ability of subjects to identify and reproduce brief temporal intervals is influenced by many factors whether they be stimulus-based, task-based or subject-based. The current study examines the role individual differences play in subsecond and suprasecond timing judgments, using the schizoptypy personality scale as a test- case approach for quantifying a broad range of individual differences. In two experiments, 129 (Experiment 1) and 141 (Experiment 2) subjects completed the O-LIFE personality questionnaire prior to performing a modified temporal-bisect ion task. In the bisection task, subjects responded to two identical instantiations of a luminance grating presented in a 4deg window, 4deg above fixation for 1.5 s Experiment 1) or 3 s (Experiment 2). Subjects initiated presentation with a button- press, and released the button when they considered the stimulus to be half-way through (750/1500 ms). Subjects were then asked to indicate their ‘most accurate estimate’ of the two intervals. In this way we measure both performance on the task (a first-order measure) and the subjects’ knowledge of their performance (a second-order measure). In Experiment 1 the effect of grating-drift and feedback on performance was also examined. Experiment 2 focused on the static/no-feedback condition. For the group data, Experiment 1 showed a significant effect of presentation order in the baseline condition (no feedback), which disappeared when feedback was provided. Moving the stimulus had no effect on perceived duration. Experiment 2 showed no effect of stimulus presentation order. This elimination of the subsecond order-effect was at the expense of accuracy, as the mid-point of the suprasecond interval was generally underestimated. Response precision increased as a proportion of total duration, reducing the variance below that predicted by Weber’s law. This result is consistent with a breakdown of the scalar properties of time perception in the early suprasecond range. All subjects showed good insight into their own performance, though that insight did not necessarily correlate with the veridical bisection point. In terms of personality, we found evidence of significant differences in performance along the Unusual Experiences subscale, of most theoretical interest here, in the subsecond condition only. There was also significant correlation with Impulsive Nonconformity and Cognitive Disorganisation in the sub- and suprasecond conditions, respectively. Overall, these data support a partial dissocation of timing mechanisms at very short and slightly longer intervals. Further, these results suggest that perception is not the only critical mitigator of confidence in temporal experience, since individuals can effectively compensate for differences in perception at the level of metacognition in early suprasecond time. Though there are individual differences in performance, these are perhaps less than expected from previous reports and indicate an effective timing mechanism dealing with brief durations independent of the influence of significant personality trait differences

    Eukaryotic Translation Termination

    No full text

    A pan-cancer genome-wide analysis reveals tumour dependencies by induction of nonsense-mediated decay

    Get PDF
    Nonsense-mediated decay (NMD) eliminates transcripts with premature termination codons. Although NMD-induced loss-of-function has been shown to contribute to the genesis of particular cancers, its global functional consequence in tumours has not been characterized. Here we develop an algorithm to predict NMD and apply it on somatic mutations reported in The Cancer Genome Atlas. We identify more than 73 K mutations that are predicted to elicit NMD (NMD-elicit). NMD-elicit mutations in tumour suppressor genes (TSGs) are associated with significant reduction in gene expression. We discover cancer-specific NMD-elicit signatures in TSGs and cancer-associated genes. Our analysis reveals a previously unrecognized dependence of hypermutated tumours on hypofunction of genes that are involved in chromatin remodelling and translation. Half of hypermutated stomach adenocarcinomas are associated with NMD-elicit mutations of the translation initiators LARP4B and EIF5B. Our results unravel strong therapeutic opportunities by targeting tumour dependencies on NMD-elicit mutations
    corecore