1,306 research outputs found

    Unification of Radio Galaxies and Their Accretion/Jet Properties

    Full text link
    We investigate the relation between black hole mass, M_bh, and jet power, Q_jet, for a sample of BL Lacs and radio quasars. We find that BL Lacs are separated from radio quasars by the FR I/II dividing line in M_bh-Q_jet plane, which strongly supports the unification scheme of FR I/BL Lac and FR II/radio quasar. The Eddington ratio distribution of BL Lacs and radio quasars exhibits a bimodal nature with a rough division at L_bol/L_Edd~0.01, which imply that they may have different accretion modes. We calculate the jet power extracted from advection dominated accretion flow (ADAF), and find that it require dimensionless angular momentum of black hole j~0.9-0.99 to reproduce the dividing line between FR I/II or BL Lac/radio quasar if dimensionless accretion rate mdot=0.01 is adopted, which is required by above bimodal distribution of Eddington ratios. Our results suggest that black holes in radio galaxies are rapidly spinning.Comment: To appear JAA in Jun

    Supersymmetric States in Large N Chern-Simons-Matter Theories

    Full text link
    In this paper we study the spectrum of BPS operators/states in N=2 superconformal U(N) Chern-Simons-matter theories with adjoint chiral matter fields, with and without superpotential. The superconformal indices and conjectures on the full supersymmetric spectrum of the theories in the large N limit with up to two adjoint matter fields are presented. Our results suggest that some of these theories may have supergravity duals at strong coupling, while some others may be dual to higher spin theories of gravity at strong coupling. For the N=2 theory with no superpotential, we study the renormalization of R-charge at finite 't Hooft coupling using "Z-minimization". A particularly intriguing result is found in the case of one adjoint matter.Comment: 53 pages, 18 figures. v2: improved numerics, additional comments adde

    On nonsupersymmetric \BC^4/\BZ_N, tachyons, terminal singularities and flips

    Full text link
    We investigate nonsupersymmetric \BC^4/\BZ_N orbifold singularities using their description in terms of the string worldsheet conformal field theory and its close relation with the toric geometry description of these singularities and their possible resolutions. Analytic and numerical study strongly suggest the absence of nonsupersymmetric Type II terminal singularities (i.e. with no marginal or relevant blowup modes) so that there are always moduli or closed string tachyons that give rise to resolutions of these singularities, although supersymmetric and Type 0 terminal singularities do exist. Using gauged linear sigma models, we analyze the phase structure of these singularities, which often involves 4-dimensional flip transitions, occurring between resolution endpoints of distinct topology. We then discuss 4-dim analogs of unstable conifold-like singularities that exhibit flips, in particular their Type II GSO projection and the phase structure. We also briefly discuss aspects of M2-branes stacked at such singularities and nonsupersymmetric AdS_4\times S^7/\BZ_N backgrounds.Comment: Latex, 43pgs incl. appendices, 2 eps figs, v2. minor clarifications added, to appear in JHE

    Lifshitz spacetimes from AdS null and cosmological solutions

    Full text link
    We describe solutions of 10-dimensional supergravity comprising null deformations of AdS5Ă—S5AdS_5\times S^5 with a scalar field, which have z=2z=2 Lifshitz symmetries. The bulk Lifshitz geometry in 3+1-dimensions arises by dimensional reduction of these solutions. The dual field theory in this case is a deformation of the N=4 super Yang-Mills theory. We discuss the holographic 2-point function of operators dual to bulk scalars. We further describe time-dependent (cosmological) solutions which have anisotropic Lifshitz scaling symmetries. We also discuss deformations of AdSĂ—XAdS\times X in 11-dimensional supergravity, which are somewhat similar to the solutions above. In some cases here, we expect the field theory duals to be deformations of the Chern-Simons theories on M2-branes stacked at singularities.Comment: Latex, 29pgs, v3. references, minor clarifications (subsection on Lifshitz geometry seen by scalar probes) added, to appear in JHE

    Foundations of Black Hole Accretion Disk Theory

    Get PDF
    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at http://www.livingreviews.org/lrr-2013-

    Genome-Wide Association Studies in Dogs and Humans Identify ADAMTS20 as a Risk Variant for Cleft Lip and Palate

    Get PDF
    Cleft lip with or without cleft palate (CL/P) is the most commonly occurring craniofacial birth defect. We provide insight into the genetic etiology of this birth defect by performing genome-wide association studies in two species: dogs and humans. In the dog, a genome-wide association study of 7 CL/P cases and 112 controls from the Nova Scotia Duck Tolling Retriever (NSDTR) breed identified a significantly associated region on canine chromosome 27 (unadjusted p=1.1 x 10-13; adjusted p= 2.2 x 10-3). Further analysis in NSDTR families and additional full sibling cases identified a 1.44 Mb homozygous haplotype (chromosome 27: 9.29 – 10.73 Mb) segregating with a more complex phenotype of cleft lip, cleft palate, and syndactyly (CLPS) in 13 cases. Whole-genome sequencing of 3 CLPS cases and 4 controls at 15X coverage led to the discovery of a frameshift mutation within ADAMTS20 (c.1360_1361delAA (p.Lys453Ilefs*3)), which segregated concordant with the phenotype. In a parallel study in humans, a family-based association analysis (DFAM) of 125 CL/P cases, 420 unaffected relatives, and 392 controls from a Guatemalan cohort, identified a suggestive association (rs10785430; p =2.67 x 10-6) with the same gene, ADAMTS20. Sequencing of cases from the Guatemalan cohort was unable to identify a causative mutation within the coding region of ADAMTS20, but four coding variants were found in additional cases of CL/P. In summary, this study provides genetic evidence for a role of ADAMTS20 in CL/P development in dogs and as a candidate gene for CL/P development in humans

    Interstellar scintillation as the origin of rapid radio variability in the quasar J1819+3845

    Get PDF
    Quasars shine brightly due to the liberation of gravitational energy as matter falls onto a supermassive black hole in the centre of a galaxy. Variations in the radiation received from active galactic nuclei (AGN) are studied at all wavelengths, revealing the tiny dimensions of the region and the processes of fuelling the black hole. Some AGN are variable at optical and shorter wavelengths, and display radio outbursts over years and decades. These AGN often also show faster variations at radio wavelengths (intraday variability, IDV) which have been the subject of much debate. The simplest explanation, supported by a correlation in some sources between the optical (intrinsic) and faster radio variations, is that the rapid radio variations are intrinsic. However, this explanation implies physically difficult brightness temperatures, suggesting that the variations may be due to scattering of the incident radiation in the interstellar medium of our Galaxy. Here we present results which show unambiguously that the variations in one extreme case are due to interstellar scintillation. We also measure the transverse velocity of the scattering material, revealing a surprising high velocity plasma close to the Solar System

    Energy Extraction from Spinning Black Holes via Relativistic Jets

    Full text link
    It has for long been an article of faith among astrophysicists that black hole spin energy is responsible for powering the relativistic jets seen in accreting black holes. Two recent advances have strengthened the case. First, numerical general relativistic magnetohydrodynamic simulations of accreting spinning black holes show that relativistic jets form spontaneously. In at least some cases, there is unambiguous evidence that much of the jet energy comes from the black hole, not the disk. Second, spin parameters of a number of accreting stellar-mass black holes have been measured. For ballistic jets from these systems, it is found that the radio luminosity of the jet correlates with the spin of the black hole. This suggests a causal relationship between black hole spin and jet power, presumably due to a generalized Penrose process.Comment: 15 pages, 4 figures. To appear in the proceedings of the conference "Relativity and Gravitation: 100 Years after Einstein in Prague" held in Prague, June 25-29, 2012, Ji\v{r}\'i Bi\v{c}\'ak and Tom\'a\v{s} Ledvinka editors, Max-Planck Research Library for the History and Development of Knowledge, Open Access Edition, Berlin (2013

    Accreting Black Holes

    Full text link
    This chapter provides a general overview of the theory and observations of black holes in the Universe and on their interpretation. We briefly review the black hole classes, accretion disk models, spectral state classification, the AGN classification, and the leading techniques for measuring black hole spins. We also introduce quasi-periodic oscillations, the shadow of black holes, and the observations and the theoretical models of jets.Comment: 41 pages, 18 figures. To appear in "Tutorial Guide to X-ray and Gamma-ray Astronomy: Data Reduction and Analysis" (Ed. C. Bambi, Springer Singapore, 2020). v3: fixed some typos and updated some parts. arXiv admin note: substantial text overlap with arXiv:1711.1025

    Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials

    Full text link
    Recent years witnessed a rapid growth of interest of scientific and engineering communities to thermal properties of materials. Carbon allotropes and derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range - of over five orders of magnitude - from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. I review thermal and thermoelectric properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. A special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe prospects of applications of graphene and carbon materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe
    • …
    corecore