532 research outputs found
Microscopic Polarization in Bilayer Graphene
Bilayer graphene has drawn significant attention due to the opening of a band
gap in its low energy electronic spectrum, which offers a promising route to
electronic applications. The gap can be either tunable through an external
electric field or spontaneously formed through an interaction-induced symmetry
breaking. Our scanning tunneling measurements reveal the microscopic nature of
the bilayer gap to be very different from what is observed in previous
macroscopic measurements or expected from current theoretical models. The
potential difference between the layers, which is proportional to charge
imbalance and determines the gap value, shows strong dependence on the disorder
potential, varying spatially in both magnitude and sign on a microscopic level.
Furthermore, the gap does not vanish at small charge densities. Additional
interaction-induced effects are observed in a magnetic field with the opening
of a subgap when the zero orbital Landau level is placed at the Fermi energy
Perceptual Compressive Sensing
Compressive sensing (CS) works to acquire measurements at sub-Nyquist rate
and recover the scene images. Existing CS methods always recover the scene
images in pixel level. This causes the smoothness of recovered images and lack
of structure information, especially at a low measurement rate. To overcome
this drawback, in this paper, we propose perceptual CS to obtain high-level
structured recovery. Our task no longer focuses on pixel level. Instead, we
work to make a better visual effect. In detail, we employ perceptual loss,
defined on feature level, to enhance the structure information of the recovered
images. Experiments show that our method achieves better visual results with
stronger structure information than existing CS methods at the same measurement
rate.Comment: Accepted by The First Chinese Conference on Pattern Recognition and
Computer Vision (PRCV 2018). This is a pre-print version (not final version
Quantum Hall effect and Landau level crossing of Dirac fermions in trilayer graphene
We investigate electronic transport in high mobility (\textgreater 100,000
cm/Vs) trilayer graphene devices on hexagonal boron nitride, which
enables the observation of Shubnikov-de Haas oscillations and an unconventional
quantum Hall effect. The massless and massive characters of the TLG subbands
lead to a set of Landau level crossings, whose magnetic field and filling
factor coordinates enable the direct determination of the
Slonczewski-Weiss-McClure (SWMcC) parameters used to describe the peculiar
electronic structure of trilayer graphene. Moreover, at high magnetic fields,
the degenerate crossing points split into manifolds indicating the existence of
broken-symmetry quantum Hall states.Comment: Supplementary Information at
http://jarilloherrero.mit.edu/wp-content/uploads/2011/04/Supplementary_Taychatanapat.pd
Phytoestrogens
Collectively, plants contain several different families of natural products among which are compounds with weak estrogenic or antiestrogenic activity toward mammals. These compounds, termed phytoestrogens, include certain isoflavonoids, flavonoids, stilbenes, and lignans. The best-studied dietary phytoestrogens are the soy isoflavones and the flaxseed lignans. Their perceived health beneficial properties extend beyond hormone-dependent breast and prostate cancers and osteoporosis to include cognitive function, cardiovascular disease, immunity and inflammation, and reproduction and fertility. In the future, metabolic engineering of plants could generate novel and exquisitely controlled dietary sources with which to better assess the potential health beneficial effects of phytoestrogens
Strain-induced Evolution of Electronic Band Structures in a Twisted Graphene Bilayer
Here we study the evolution of local electronic properties of a twisted
graphene bilayer induced by a strain and a high curvature. The strain and
curvature strongly affect the local band structures of the twisted graphene
bilayer; the energy difference of the two low-energy van Hove singularities
decreases with increasing the lattice deformations and the states condensed
into well-defined pseudo-Landau levels, which mimic the quantization of massive
Dirac fermions in a magnetic field of about 100 T, along a graphene wrinkle.
The joint effect of strain and out-of-plane distortion in the graphene wrinkle
also results in a valley polarization with a significant gap, i.e., the
eight-fold degenerate Landau level at the charge neutrality point is splitted
into two four-fold degenerate quartets polarized on each layer. These results
suggest that strained graphene bilayer could be an ideal platform to realize
the high-temperature zero-field quantum valley Hall effect.Comment: 4 figure
Quantum Resistance Standard Based on Epitaxial Graphene
We report development of a quantum Hall resistance standard accurate to a few
parts in a billion at 300 mK and based on large area epitaxial graphene. The
remarkable precision constitutes an improvement of four orders of magnitude
over the best results obtained in exfoliated graphene and is similar to the
accuracy achieved in well-established semiconductor standards. Unlike the
traditional resistance standards the novel graphene device is still accurately
quantized at 4.2 K, vastly simplifying practical metrology. This breakthrough
was made possible by exceptional graphene quality achieved with scalable
silicon carbide technology on a wafer scale and shows great promise for future
large scale applications in electronics.Comment: Submitte
Nav1.7 is required for normal C-low threshold mechanoreceptor function in humans and mice
Patients with bi-allelic loss of function mutations in the voltage-gated sodium channel Nav1.7 present with congenital insensitivity to pain (CIP), whilst low threshold mechanosensation is reportedly normal. Using psychophysics (n = 6 CIP participants and n = 86 healthy controls) and facial EMG (n = 3 CIP participants and n = 8 healthy controls) we have found that these patients also have abnormalities in the encoding of affective touch which is mediated by the specialised afferents; C-low threshold mechanoreceptors (C-LTMRs). In the mouse we found that C-LTMRs express high levels of Nav1.7. Genetic loss or selective pharmacological inhibition of Nav1.7 in C-LTMRs resulted in a significant reduction in the total sodium current density, an increased mechanical threshold and reduced sensitivity to non-noxious cooling. The behavioural consequence of loss of Nav1.7 in C-LTMRs in mice was an elevation in the von Frey mechanical threshold and less sensitivity to cooling on a thermal gradient. Nav1.7 is therefore not only essential for normal pain perception but also for normal C-LTMR function, cool sensitivity and affective touch
- …