83 research outputs found
The Cosmic Infrared Background: Measurements and Implications
The cosmic infrared background records much of the radiant energy released by
processes of structure formation that have occurred since the decoupling of
matter and radiation following the Big Bang. In the past few years, data from
the Cosmic Background Explorer mission provided the first measurements of this
background, with additional constraints coming from studies of the attenuation
of TeV gamma-rays. At the same time there has been rapid progress in resolving
a significant fraction of this background with the deep galaxy counts at
infrared wavelengths from the Infrared Space Observatory instruments and at
submillimeter wavelengths from the Submillimeter Common User Bolometer Array
instrument. This article reviews the measurements of the infrared background
and sources contributing to it, and discusses the implications for past and
present cosmic processes.Comment: 61 pages, incl. 9 figures, to be published in Annual Reviews of
Astronomy and Astrophysics, 2001, Vol. 3
Stable-isotope techniques to investigate sources of plant water
Stable isotopologues of water (mainly 1H216O, HD16O and 1H218O) have been used for decades as tracers of the Earth's water cycle. In this chapter, we briefly describe the theoretical background and state-of-the-art techniques of the use of water stable isotopes to investigate the sources of plant water. We aim to provide the basic understanding of stable isotope fractionation within the Earth's critical zone that is relevant for studies of plant water sources. We then present a practical guide of their most common applications in field studies and the most common and up-to-date laboratory procedures. We finally introduce the existing statistical approaches for estimating the relative contributions of water sources to plant transpiration. By acknowledging the advantages and limitations of each approach, we aim to provide an overview of the current techniques to researchers in the fields of plant ecophysiology, ecohydrology and forest ecology, so that they can make informed decisions when designing their experiments
How can natural products serve as a viable source of lead compounds for the development of new/novel anti-malarials?
Malaria continues to be an enormous global health challenge, with millions of new infections and deaths reported annually. This is partly due to the development of resistance by the malaria parasite to the majority of established anti-malarial drugs, a situation that continues to hamper attempts at controlling the disease. This has spurred intensive drug discovery endeavours geared towards identifying novel, highly active anti-malarial drugs, and the identification of quality leads from natural sources would greatly augment these efforts. The current reality is that other than compounds that have their foundation in historic natural products, there are no other compounds in drug discovery as part of lead optimization projects and preclinical development or further that have originated from a natural product start-point in recent years. This paper briefly presents both classical as well as some more modern, but underutilized, approaches that have been applied outside the field of malaria, and which could be considered in enhancing the potential of natural products to provide or inspire the development of anti-malarial lead compounds
Neuronal Conduction of Excitation without Action Potentials Based on Ceramide Production
International audienceBACKGROUND: Action potentials are the classic mechanism by which neurons convey a state of excitation throughout their length, leading, after synaptic transmission, to the activation of other neurons and consequently to network functioning. Using an in vitro integrated model, we found previously that peripheral networks in the autonomic nervous system can organise an unconventional regulatory reflex of the digestive tract motility without action potentials. METHODOLOGY/PRINCIPAL FINDINGS: In this report, we used combined neuropharmacological and biochemical approaches to elucidate some steps of the mechanism that conveys excitation along the nerves fibres without action potentials. This mechanism requires the production of ceramide in membrane lipid rafts, which triggers in the cytoplasm an increase in intracellular calcium concentration, followed by activation of a neuronal nitric oxide synthase leading to local production of nitric oxide, and then to guanosine cyclic monophosphate. This sequence of second messengers is activated in cascade from rafts to rafts to ensure conduction of the excitation along the nerve fibres. CONCLUSIONS/SIGNIFICANCE: Our results indicate that second messengers are involved in neuronal conduction of excitation without action potentials. This mechanism represents the first evidence-to our knowledge-that excitation is carried along nerves independently of electrical signals. This unexpected ceramide-based conduction of excitation without action potentials along the autonomic nerve fibres opens up new prospects in our understanding of neuronal functioning
Phosphatidylserine Targets Single-Walled Carbon Nanotubes to Professional Phagocytes In Vitro and In Vivo
Broad applications of single-walled carbon nanotubes (SWCNT) dictate the necessity to better understand their health effects. Poor recognition of non-functionalized SWCNT by phagocytes is prohibitive towards controlling their biological action. We report that SWCNT coating with a phospholipid “eat-me” signal, phosphatidylserine (PS), makes them recognizable in vitro by different phagocytic cells - murine RAW264.7 macrophages, primary monocyte-derived human macrophages, dendritic cells, and rat brain microglia. Macrophage uptake of PS-coated nanotubes was suppressed by the PS-binding protein, Annexin V, and endocytosis inhibitors, and changed the pattern of pro- and anti-inflammatory cytokine secretion. Loading of PS-coated SWCNT with pro-apoptotic cargo (cytochrome c) allowed for the targeted killing of RAW264.7 macrophages. In vivo aspiration of PS-coated SWCNT stimulated their uptake by lung alveolar macrophages in mice. Thus, PS-coating can be utilized for targeted delivery of SWCNT with specified cargoes into professional phagocytes, hence for therapeutic regulation of specific populations of immune-competent cells
- …