397 research outputs found

    A Simple and Sensitive Method for Measuring Tumor-Specific T Cell Cytotoxicity

    Get PDF
    A simple and sensitive method to quantitatively measure the cytolytic effect of tumor-specific T killer cells is highly desirable for basic and clinical studies. Chromium (51Cr) release assay has been the “gold standard” for quantifying cytolytic activities of cytotoxic T lymphocytes (CTLs) against target cells and this method is still being used in many laboratories. However, a major drawback of this method is the use of radioactive materials, which is inconvenient to handle because of environmental safety concerns and expensive due to the short half-life of the isotope. Consequently, several nonradioactive methods have been reported recently. Here we report a new method that we recently developed for quantifying antigen-specific cytolytic activity of CTLs. This method fully exploits the high sensitivity and the relative simplicity of luciferase quantitative assay. We initially expected the released luciferase in the supernatant to be the adequate source for monitoring cell death. However, to our total surprise, incubation of these killer T cells with the tumor cell targets did not result in significant release of luciferase in the culture medium. Instead, we found that the remaining luciferase inside the cells could accurately reflect the overall cell viability

    Accommodating individual travel history and unsampled diversity in Bayesian phylogeographic inference of SARS-CoV-2

    Get PDF
    Spatiotemporal bias in genome sampling can severely confound discrete trait phylogeographic inference. This has impeded our ability to accurately track the spread of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, despite the availability of unprecedented numbers of SARS-CoV-2 genomes. Here, we present an approach to integrate individual travel history data in Bayesian phylogeographic inference and apply it to the early spread of SARS-CoV-2. We demonstrate that including travel history data yields i) more realistic hypotheses of virus spread and ii) higher posterior predictive accuracy compared to including only sampling location. We further explore methods to ameliorate the impact of sampling bias by augmenting the phylogeographic analysis with lineages from undersampled locations. Our reconstructions reinforce specific transmission hypotheses suggested by the inclusion of travel history data, but also suggest alternative routes of virus migration that are plausible within the epidemiological context but are not apparent with current sampling efforts.status: publishe

    X-Ray Spectroscopy of Stars

    Full text link
    (abridged) Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma. Coronal structure, its thermal stratification and geometric extent can be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures (partly multiple); some corrections made after proof stag

    Evidence of two lineages of the dengue vector Aedes aegypti in the Brazilian Amazon, based on mitochondrial DNA ND4 gene sequences

    Get PDF
    Genetic variation was estimated in ten samples populations of Aedes aegypti from the Brazilian Amazon, by using a 380 bp fragment of the mitochocondrial NADH dehydrogenase subunit 4 (ND4) gene. A total of 123 individuals were analyzed, whereby 13 haplotypes were found. Mean genetic diversity was slightly high (h = 0.666 ± 0.029; π = 0.0115 ± 0.0010). Two AMOVA analyses indicated that most of the variation (~70%-72%) occurred within populations. The variation found among and between populations within the groups disclosed lower, but even so, highly significant values. FST values were not significant in most of the comparisons, except for the samples from Pacaraima and Rio Branco. The isolation by distance (IBD) model was not significant (r = 0.2880; p = 0.097) when the samples from Pacaraima and Rio Branco were excluded from the analyses, this indicating that genetic distance is not related to geographic distance. This result may be explained either by passive dispersal patterns (via human migrations and commercial exchange) or be due to the recent expansion of this mosquito in the Brazilian Amazon. Phylogenetic relationship analysis showed two genetically distinct groups (lineages) within the Brazilian Amazon, each sharing haplotypes with populations from West Africa and Asia

    Phylodynamic assessment of intervention strategies for the West African Ebola virus outbreak

    Get PDF
    Genetic analyses have provided important insights into Ebola virus spread during the recent West African outbreak, but their implications for specific intervention scenarios remain unclear. Here, we address this issue using a collection of phylodynamic approaches. We show that long-distance dispersal events were not crucial for epidemic expansion and that preventing viral lineage movement to any given administrative area would, in most cases, have had little impact. However, major urban areas were critical in attracting and disseminating the virus: preventing viral lineage movement to all three capitals simultaneously would have contained epidemic size to one-third. We also show that announcements of border closures were followed by a significant but transient effect on international virus dispersal. By quantifying the hypothetical impact of different intervention strategies, as well as the impact of barriers on dispersal frequency, our study illustrates how phylodynamic analyses can help to address specific epidemiological and outbreak control questions.info:eu-repo/semantics/publishe

    Association mapping for yield and grain quality traits in rice (Oryza sativa L.)

    Get PDF
    Association analysis was applied to a panel of accessions of Embrapa Rice Core Collection (ERiCC) with 86 SSR and field data from two experiments. A clear subdivision between lowland and upland accessions was apparent, thereby indicating the presence of population structure. Thirty-two accessions with admixed ancestry were identified through structure analysis, these being discarded from association analysis, thus leaving 210 accessions subdivided into two panels. The association of yield and grain-quality traits with SSR was undertaken with a mixed linear model, with markers and subpopulation as fixed factors, and kinship matrix as a random factor. Eight markers from the two appraised panels showed significant association with four different traits, although only one (RM190) maintained the marker-trait association across years and cultivation. The significant association detected between amylose content and RM190 was in agreement with previous QTL analyses in the literature. Herein, the feasibility of undertaking association analysis in conjunction with germplasm characterization was demonstrated, even when considering low marker density. The high linkage disequilibrium expected in rice lines and cultivars facilitates the detection of marker-trait associations for implementing marker assisted selection, and the mining of alleles related to important traits in germplasm

    Progenitor-Derivative Relationships of Hordeum Polyploids (Poaceae, Triticeae) Inferred from Sequences of TOPO6, a Nuclear Low-Copy Gene Region

    Get PDF
    Polyploidization is a major mechanism of speciation in plants. Within the barley genus Hordeum, approximately half of the taxa are polyploids. While for diploid species a good hypothesis of phylogenetic relationships exists, there is little information available for the polyploids (4×, 6×) of Hordeum. Relationships among all 33 diploid and polyploid Hordeum species were analyzed with the low-copy nuclear marker region TOPO6 for 341 Hordeum individuals and eight outgroup species. PCR products were either directly sequenced or cloned and on average 12 clones per individual were included in phylogenetic analyses. In most diploid Hordeum species TOPO6 is probably a single-copy locus. Most sequences found in polyploid individuals phylogenetically cluster together with sequences derived from diploid species and thus allow the identification of parental taxa of polyploids. Four groups of sequences occurring only in polyploid taxa are interpreted as footprints of extinct diploid taxa, which contributed to allopolyploid evolution. Our analysis identifies three key species involved in the evolution of the American polyploids of the genus. (i) All but one of the American tetraploids have a TOPO6 copy originating from the Central Asian diploid H. roshevitzii, the second copy clustering with different American diploid species. (ii) All hexaploid species from the New World have a copy of an extinct close relative of H. californicum and (iii) possess the TOPO6 sequence pattern of tetraploid H. jubatum, each with an additional copy derived from different American diploids. Tetraploid H. bulbosum is an autopolyploid, while the assumed autopolyploid H. brevisubulatum (4×, 6×) was identified as allopolyploid throughout most of its distribution area. The use of a proof-reading DNA polymerase in PCR reduced the proportion of chimerical sequences in polyploids in comparison to Taq polymerase

    Plant Identity Influences Decomposition through More Than One Mechanism

    Get PDF
    Plant litter decomposition is a critical ecosystem process representing a major pathway for carbon flux, but little is known about how it is affected by changes in plant composition and diversity. Single plant functional groups (graminoids, legumes, non-leguminous forbs) were removed from a grassland in northern Canada to examine the impacts of functional group identity on decomposition. Removals were conducted within two different environmental contexts (fertilization and fungicide application) to examine the context-dependency of these identity effects. We examined two different mechanisms by which the loss of plant functional groups may impact decomposition: effects of the living plant community on the decomposition microenvironment, and changes in the species composition of the decomposing litter, as well as the interaction between these mechanisms. We show that the identity of the plant functional group removed affects decomposition through both mechanisms. Removal of both graminoids and forbs slowed decomposition through changes in the decomposition microenvironment. We found non-additive effects of litter mixing, with both the direction and identity of the functional group responsible depending on year; in 2004 graminoids positively influenced decomposition whereas in 2006 forbs negatively influenced decomposition rate. Although these two mechanisms act independently, their effects may be additive if both mechanisms are considered simultaneously. It is essential to understand the variety of mechanisms through which even a single ecosystem property is affected if we are to predict the future consequences of biodiversity loss
    corecore