430 research outputs found

    Diurnal rhythms in the human urine metabolome during sleep and total sleep deprivation

    Get PDF
    Understanding how metabolite levels change over the 24 hour day is of crucial importance for clinical and epidemiological studies. Additionally, the association between sleep deprivation and metabolic disorders such as diabetes and obesity requires investigation into the links between sleep and metabolism. Here, we characterise time-of-day variation and the effects of sleep deprivation on urinary metabolite profiles. Healthy male participants (n = 15) completed an in-laboratory study comprising one 24 h sleep/wake cycle prior to 24 h of continual wakefulness under highly controlled environmental conditions. Urine samples were collected over set 2-8 h intervals and analysed by (1)H NMR spectroscopy. Significant changes were observed with respect to both time of day and sleep deprivation. Of 32 identified metabolites, 7 (22%) exhibited cosine rhythmicity over at least one 24 h period; 5 exhibiting a cosine rhythm on both days. Eight metabolites significantly increased during sleep deprivation compared with sleep (taurine, formate, citrate, 3-indoxyl sulfate, carnitine, 3-hydroxyisobutyrate, TMAO and acetate) and 8 significantly decreased (dimethylamine, 4-DTA, creatinine, ascorbate, 2-hydroxyisobutyrate, allantoin, 4-DEA, 4-hydroxyphenylacetate). These data indicate that sampling time, the presence or absence of sleep and the response to sleep deprivation are highly relevant when identifying biomarkers in urinary metabolic profiling studies

    Estimating trace deposition time with circadian biomarkers: a prospective and versatile tool for crime scene reconstruction

    Get PDF
    Linking biological samples found at a crime scene with the actual crime event represents the most important aspect of forensic investigation, together with the identification of the sample donor. While DNA profiling is well established for donor identification, no reliable methods exist for timing forensic samples. Here, we provide for the first time a biochemical approach for determining deposition time of human traces. Using commercial enzyme-linked immunosorbent assays we showed that the characteristic 24-h profiles of two circadian hormones, melatonin (concentration peak at late night) and cortisol (peak in the morning) can be reproduced from small samples of whole blood and saliva. We further demonstrated by analyzing small stains dried and stored up to 4 weeks the in vitro stability of melatonin, whereas for cortisol a statistically significant decay with storage time was observed, although the hormone was still reliably detectable in 4-week-old samples. Finally, we showed that the total protein concentration, also assessed using a commercial assay, can be used for normalization of hormone signals in blood, but less so in saliva. Our data thus demonstrate that estimating normalized concentrations of melatonin and cortisol represents a prospective approach for determining deposition time of biological trace samples, at least from blood, with promising expectations for forensic applications. In the broader context, our study opens up a new field of circadian biomarkers for deposition timing of forensic traces; future studies using other circadian biomarkers may reveal if the time range offered by the two hormones studied here can be specified more exactly

    An integrated analysis and comparison of serum, saliva and sebum for COVID-19 metabolomics.

    Get PDF
    The majority of metabolomics studies to date have utilised blood serum or plasma, biofluids that do not necessarily address the full range of patient pathologies. Here, correlations between serum metabolites, salivary metabolites and sebum lipids are studied for the first time. 83 COVID-19 positive and negative hospitalised participants provided blood serum alongside saliva and sebum samples for analysis by liquid chromatography mass spectrometry. Widespread alterations to serum-sebum lipid relationships were observed in COVID-19 positive participants versus negative controls. There was also a marked correlation between sebum lipids and the immunostimulatory hormone dehydroepiandrosterone sulphate in the COVID-19 positive cohort. The biofluids analysed herein were also compared in terms of their ability to differentiate COVID-19 positive participants from controls; serum performed best by multivariate analysis (sensitivity and specificity of 0.97), with the dominant changes in triglyceride and bile acid levels, concordant with other studies identifying dyslipidemia as a hallmark of COVID-19 infection. Sebum performed well (sensitivity 0.92; specificity 0.84), with saliva performing worst (sensitivity 0.78; specificity 0.83). These findings show that alterations to skin lipid profiles coincide with dyslipidaemia in serum. The work also signposts the potential for integrated biofluid analyses to provide insight into the whole-body atlas of pathophysiological conditions

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    Modulation of Plasma Metabolite Biomarkers of the MAPK Pathway with MEK Inhibitor RO4987655: Pharmacodynamic and Predictive Potential in Metastatic Melanoma.

    Get PDF
    MAPK pathway activation is frequently observed in human malignancies, including melanoma, and is associated with sensitivity to MEK inhibition and changes in cellular metabolism. Using quantitative mass spectrometry-based metabolomics, we identified in preclinical models 21 plasma metabolites including amino acids, propionylcarnitine, phosphatidylcholines, and sphingomyelins that were significantly altered in two B-RAF-mutant melanoma xenografts and that were reversed following a single dose of the potent and selective MEK inhibitor RO4987655. Treatment of non-tumor-bearing animals and mice bearing the PTEN-null U87MG human glioblastoma xenograft elicited plasma changes only in amino acids and propionylcarnitine. In patients with advanced melanoma treated with RO4987655, on-treatment changes of amino acids were observed in patients with disease progression and not in responders. In contrast, changes in phosphatidylcholines and sphingomyelins were observed in responders. Furthermore, pretreatment levels of seven lipids identified in the preclinical screen were statistically significantly able to predict objective responses to RO4987655. The RO4987655 treatment-related changes were greater than baseline physiological variability in nontreated individuals. This study provides evidence of a translational exo-metabolomic plasma readout predictive of clinical efficacy together with pharmacodynamic utility following treatment with a signal transduction inhibitor. Mol Cancer Ther; 16(10); 2315-23. ©2017 AACR

    Stress-induced lipocalin-2 controls dendritic spine formation and neuronal activity in the amygdala.

    Get PDF
    This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.Behavioural adaptation to psychological stress is dependent on neuronal plasticity and dysfunction at this cellular level may underlie the pathogenesis of affective disorders such as depression and post-traumatic stress disorder. Taking advantage of genome-wide microarray assay, we performed detailed studies of stress-affected transcripts in the amygdala - an area which forms part of the innate fear circuit in mammals. Having previously demonstrated the role of lipocalin-2 (Lcn-2) in promoting stress-induced changes in dendritic spine morphology/function and neuronal excitability in the mouse hippocampus, we show here that the Lcn-2 gene is one of the most highly upregulated transcripts detected by microarray analysis in the amygdala after acute restraint-induced psychological stress. This is associated with increased Lcn-2 protein synthesis, which is found on immunohistochemistry to be predominantly localised to neurons. Stress-naïve Lcn-2(-/-) mice show a higher spine density in the basolateral amygdala and a 2-fold higher rate of neuronal firing rate compared to wild-type mice. Unlike their wild-type counterparts, Lcn-2(-/-) mice did not show an increase in dendritic spine density in response to stress but did show a distinct pattern of spine morphology. Thus, amygdala-specific neuronal responses to Lcn-2 may represent a mechanism for behavioural adaptation to psychological stress.Marie Curie Excellence Grant from the European Commission.Medical Research Council Project GrantCOST Action ECMNe

    The Canadian Bandaging Trial: Evidence-informed leg ulcer care and the effectiveness of two compression technologies

    Get PDF
    Background: Objective: To determine the relative effectiveness of evidence-informed practice using two high compression systems: four-layer (4LB) and short-stretch bandaging (SSB) in community care of venous leg ulcers. Design and Setting: Pragmatic, multi-centre, parallel-group, open-label, randomized controlled trial conducted in 10 centres. Cognitively intact adults (≥18 years) referred for community care (home or clinic) with a venous ulceration measuring ≥0.7cm and present for ≥1 week, with an ankle brachial pressure index (ABPI) ≥0.8, without medication-controlled Diabetes Mellitus or a previous failure to improve with either system, were eligible to participate.Methods: Consenting individuals were randomly allocated (computer-generated blocked randomization schedule) to receive either 4LB or SSB following an evidence-informed protocol. Primary endpoint: time-to- healing of the reference ulcer. Secondary outcomes: recurrence rates, health-related quality of life (HRQL), pain, and expenditures.Results: 424 individuals were randomized (4LB n = 215; SSB n = 209) and followed until their reference ulcer was healed (or maximum 30 months). An intent-to-treat analysis was conducted on all participants. Median time to ulcer healing in the 4LB group was 62 days [95% confidence interval (CI) 51 to 73], compared with 77 days (95% CI 63 to 91) in the SSB group. The unadjusted Kaplan-Meier curves revealed the difference in the distribution of cumulative healing times was not significantly different between group (log rank χ2 = 0.001, P = 0.98) nor ulcers recurrence (4LB, 10.1%; SSB, 13.3%; p = 0.345). Multivariable Cox Proportional Hazard Modeling also showed no significant between-bandage differences in healing time after controlling for significant covariates (p = 0.77). At 3-months post-baseline there were no differences in pain (no pain: 4LB, 22.7%; SSB, 26.7%; p = 0.335), or HRQL (SF-12 Mental Component Score: 4LB, 55.1; SSB, 55.8; p = 0.615; SF-12 Physical Component Score: 4LB, 39.0; SSB, 39.6; p = 0.675). The most common adverse events experienced by both groups included infection, skin breakdown and ulcer deterioration.Conclusions: The Canadian Bandaging Trial revealed that in the practice context of trained RNs using an evidence-informed protocol, the choice of bandage system (4LB and SSB) does not materially affect healing times, recurrence rates, HRQL, or pain. From a community practice perspective, this is positive news for patient-centred care allowing individual/family and practitioner choice in selecting compression technologies based on circumstances and context.Trial registration: clinicaltrials.gov Identifier: NCT00202267

    A Review of Surgical Informed Consent: Past, Present, and Future. A Quest to Help Patients Make Better Decisions

    Get PDF
    Contains fulltext : 87422.pdf (publisher's version ) (Closed access)BACKGROUND: Informed consent (IC) is a process requiring a competent doctor, adequate transfer of information, and consent of the patient. It is not just a signature on a piece of paper. Current consent processes in surgery are probably outdated and may require major changes to adjust them to modern day legislation. A literature search may provide an opportunity for enhancing the quality of the surgical IC (SIC) process. METHODS: Relevant English literature obtained from PubMed, Picarta, PsycINFO, and Google between 1993 and 2009 was reviewed. RESULTS: The body of literature with respect to SIC is slim and of moderate quality. The SIC process is an underestimated part of surgery and neither surgeons nor patients sufficiently realize its importance. Surgeons are not specifically trained and lack the competence to guide patients through a legally correct SIC process. Computerized programs can support the SIC process significantly but are rarely used for this purpose. CONCLUSIONS: IC should be integrated into our surgical practice. Unfortunately, a big gap exists between the theoretical/legal best practice and the daily practice of IC. An optimally informed patient will have more realistic expectations regarding a surgical procedure and its associated risks. Well-informed patients will be more satisfied and file fewer legal claims. The use of interactive computer-based programs provides opportunities to improve the SIC process.1 juli 201

    Acyl-Protein Thioesterase 2 Catalizes the Deacylation of Peripheral Membrane-Associated GAP-43

    Get PDF
    An acylation/deacylation cycle is necessary to maintain the steady-state subcellular distribution and biological activity of S-acylated peripheral proteins. Despite the progress that has been made in identifying and characterizing palmitoyltransferases (PATs), much less is known about the thioesterases involved in protein deacylation. In this work, we investigated the deacylation of growth-associated protein-43 (GAP-43), a dually acylated protein at cysteine residues 3 and 4. Using fluorescent fusion constructs, we measured in vivo the rate of deacylation of GAP-43 and its single acylated mutants in Chinese hamster ovary (CHO)-K1 and human HeLa cells. Biochemical and live cell imaging experiments demonstrated that single acylated mutants were completely deacylated with similar kinetic in both cell types. By RT-PCR we observed that acyl-protein thioesterase 1 (APT-1), the only bona fide thioesterase shown to mediate deacylation in vivo, is expressed in HeLa cells, but not in CHO-K1 cells. However, APT-1 overexpression neither increased the deacylation rate of single acylated GAP-43 nor affected the steady-state subcellular distribution of dually acylated GAP-43 both in CHO-K1 and HeLa cells, indicating that GAP-43 deacylation is not mediated by APT-1. Accordingly, we performed a bioinformatic search to identify putative candidates with acyl-protein thioesterase activity. Among several candidates, we found that APT-2 is expressed both in CHO-K1 and HeLa cells and its overexpression increased the deacylation rate of single acylated GAP-43 and affected the steady-state localization of diacylated GAP-43 and H-Ras. Thus, the results demonstrate that APT-2 is the protein thioesterase involved in the acylation/deacylation cycle operating in GAP-43 subcellular distribution
    corecore