82 research outputs found
Effect of Heterogeneous Mixing and Vaccination on the Dynamics of Anthelmintic Resistance: A Nested Model
Anthelmintic resistance is a major threat to current measures for helminth
control in humans and animals. The introduction of anthelmintic vaccines, as a
complement to or replacement for drug treatments, has been advocated as a
preventive measure. Here, a computer-based simulation, tracking the dynamics of
hosts, parasites and parasite-genes, shows that, depending on the degree of
host-population mixing, the frequency of totally recessive autosomes associated
with anthelmintic resistance can follow either a fast dynamical regime with a
low equilibrium point or a slow dynamical regime with a high equilibrium point.
For fully dominant autosomes, only one regime is predicted. The effectiveness
of anthelminthic vaccines against resistance is shown to be strongly influenced
by the underlying dynamics of resistant autosomes. Vaccines targeting adult
parasites, by decreasing helminth fecundity or lifespan, are predicted to be
more effective than vaccines targeting parasite larvae, by decreasing host
susceptibility to infection, in reducing the spread of resistance. These
results may inform new strategies to prevent, monitor and control the spread of
anthelmintic resistance, including the development of viable anthelmintic
vaccines
Bayes Factors for Mixed Models: a Discussion
van Doorn et al. (2021) outlined various questions that arise when conducting Bayesian model comparison for mixed effects models. Seven response articles offered their own perspective on the preferred setup for mixed model comparison, on the most appropriate specification of prior distributions, and on the desirability of default recommendations. This article presents a round-table discussion that aims to clarify outstanding issues, explore common ground, and outline practical considerations for any researcher wishing to conduct a Bayesian mixed effects model comparison
Evidence for the ‘Good Genes’ Model: Association of MHC Class II DRB Alleles with Ectoparasitism and Reproductive State in the Neotropical Lesser Bulldog Bat, Noctilio albiventris
The adaptive immune system has a major impact on parasite resistance and life history strategies. Immunological defence is costly both in terms of immediate activation and long-term maintenance. The ‘good genes’ model predicts that males with genotypes that promote a good disease resistance have the ability to allocate more resources to reproductive effort which favours the transmission of good alleles into future generations. Our study shows a correlation between immune gene constitution (Major Histocompatibility Complex, MHC class II DRB), ectoparasite loads (ticks and bat flies) and the reproductive state in a neotropical bat, Noctilio albiventris. Infestation rates with ectoparasites were linked to specific Noal-DRB alleles, differed among roosts, increased with body size and co-varied with reproductive state particularly in males. Non-reproductive adult males were more infested with ectoparasites than reproductively active males, and they had more often an allele (Noal-DRB*02) associated with a higher tick infestation than reproductively active males or subadults. We conclude that the individual immune gene constitution affects ectoparasite susceptibility, and contributes to fitness relevant trade-offs in male N. albiventris as suggested by the ‘good genes’ model
Reading during the composition of multi-sentence texts: an eye-movement study
Writers composing multi-sentence texts have immediate access to a visual representation of what they have written. Little is known about the detail of writers’ eye movements within this text during production. We describe two experiments in which competent adult writers’ eye-movements were tracked while performing short expository writing tasks. These are contrasted with conditions in which participants read and evaluated researcher-provided texts. Writers spent a mean of around 13% of their time looking back into their text. Initiation of these look-back sequences was strongly predicted by linguistically important boundaries in their ongoing production (e.g., writers were much more likely to look back immediately prior to starting a new sentence). 36% of look-back sequences were associated with sustained reading and the remainder with less patterned forward and backward saccades between words ("hopping"). Fixation and gaze durations and the presence of word-length effects suggested lexical processing of fixated words in both reading and hopping sequences. Word frequency effects were not present when writers read their own text. Findings demonstrate the technical possibility and potential value of examining writers’ fixations within their just-written text. We suggest that these fixations do not serve solely, or even primarily, in monitoring for error, but play an important role in planning ongoing production
Evolutionary genetics of MHC class II beta genes in the brown hare, Lepus europaeus
The genes of the major histocompatibility complex (MHC) are attractive candidates for investigating the link between adaptive variation and individual fitness. High levels of diversity at the MHC are thought to be the result of parasite-mediated selection and there is growing evidence to support this theory. Most studies, however, target just a single gene within the MHC and infer any evidence of selection to be representative of the entire gene region. Here we present data from three MHC class II beta genes (DPB, DQB, and DRB) for brown hares in two geographic regions and compare them against previous results from a class II alpha-chain gene (DQA). We report moderate levels of diversity and high levels of population differentiation in the DQB and DRB genes (Na = 11, Dest = 0.071 and Na = 15, Dest = 0.409, respectively), but not for the DPB gene (Na = 4, Dest = 0.00). We also detected evidence of positive selection within the peptide binding region of the DQB and DRB genes (95% CI, ω > 1.0) but found no signature of selection for DPB. Mutation and recombination were both found to be important processes shaping the evolution of the class II genes. Our findings suggest that while diversifying selection is a significant contributor to the generally high levels of MHC diversity, it does not act in a uniform manner across the entire MHC class II region. The beta-chain genes that we have characterized provide a valuable set of MHC class II markers for future studies of the evolution of adaptive variation in Leporids
Is Promiscuity Associated with Enhanced Selection on MHC-DQα in Mice (genus Peromyscus)?
Reproductive behavior may play an important role in shaping selection on Major Histocompatibility Complex (MHC) genes. For example, the number of sexual partners that an individual has may affect exposure to sexually transmitted pathogens, with more partners leading to greater exposure and, hence, potentially greater selection for variation at MHC loci. To explore this hypothesis, we examined the strength of selection on exon 2 of the MHC-DQα locus in two species of Peromyscus. While the California mouse (P. californicus) is characterized by lifetime social and genetic monogamy, the deer mouse (P. maniculatus) is socially and genetically promiscuous; consistent with these differences in mating behavior, the diversity of bacteria present within the reproductive tracts of females is significantly greater for P. maniculatus. To test the prediction that more reproductive partners and exposure to a greater range of sexually transmitted pathogens are associated with enhanced diversifying selection on genes responsible for immune function, we compared patterns and levels of diversity at the Class II MHC-DQα locus in sympatric populations of P. maniculatus and P. californicus. Using likelihood based analyses, we show that selection is enhanced in the promiscuous P. maniculatus. This study is the first to compare the strength of selection in wild sympatric rodents with known differences in pathogen milieu
Optimal deployment of components of cloud-hosted application for guaranteeing multitenancy isolation
One of the challenges of deploying multitenant cloud-hosted
services that are designed to use (or be integrated with) several
components is how to implement the required degree
of isolation between the components when there is a change
in the workload. Achieving the highest degree of isolation
implies deploying a component exclusively for one tenant;
which leads to high resource consumption and running cost
per component. A low degree of isolation allows sharing of
resources which could possibly reduce cost, but with known
limitations of performance and security interference. This
paper presents a model-based algorithm together with four
variants of a metaheuristic that can be used with it, to provide
near-optimal solutions for deploying components of a
cloud-hosted application in a way that guarantees multitenancy
isolation. When the workload changes, the model based
algorithm solves an open multiclass QN model to
determine the average number of requests that can access
the components and then uses a metaheuristic to provide
near-optimal solutions for deploying the components. Performance
evaluation showed that the obtained solutions had
low variability and percent deviation when compared to the
reference/optimal solution. We also provide recommendations
and best practice guidelines for deploying components
in a way that guarantees the required degree of isolation
Effect of Sanitation on Soil-Transmitted Helminth Infection: Systematic Review and Meta-Analysis
A systematic review and meta-analysis by Kathrin Ziegelbauer and colleagues finds that sanitation is associated with a reduced risk of transmission of helminthiases to humans
Fixation durations in scene viewing:Modeling the effects of local image features, oculomotor parameters, and task
Scene perception requires the orchestration of image- and task-related processes with oculomotor constraints. The present study was designed to investigate how these factors influence how long the eyes remain fixated on a given location. Linear mixed models (LMMs) were used to test whether local image statistics (including luminance, luminance contrast, edge density, visual clutter, and the number of homogeneous segments), calculated for 1° circular regions around fixation locations, modulate fixation durations, and how these effects depend on task-related control. Fixation durations and locations were recorded from 72 participants, each viewing 135 scenes under three different viewing instructions (memorization, preference judgment, and search). Along with the image-related predictors, the LMMs simultaneously considered a number of oculomotor and spatiotemporal covariates, including the amplitudes of the previous and next saccades, and viewing time. As a key finding, the local image features around the current fixation predicted this fixation’s duration. For instance, greater luminance was associated with shorter fixation durations. Such immediacy effects were found for all three viewing tasks. Moreover, in the memorization and preference tasks, some evidence for successor effects emerged, such that some image characteristics of the upcoming location influenced how long the eyes stayed at the current location. In contrast, in the search task, scene processing was not distributed across fixation durations within the visual span. The LMM-based framework of analysis, applied to the control of fixation durations in scenes, suggests important constraints for models of scene perception and search, and for visual attention in general
- …