1,712 research outputs found
Thermal decomposition of ternary sodium graphite intercalation compounds
Graphite intercalation compounds (GICs) are often used to produce exfoliated or functionalised graphene related materials (GRMs) in a specific solvent. This study explores the formation of the Na-tetrahydrofuran (THF)-GIC and a new ternary system based on dimethylacetamide (DMAc). Detailed comparisons of in situ temperature dependent XRD with TGA-MS and Raman measurements reveal a series of dynamic transformations during heating. Surprisingly, the bulk of the intercalation compound is stable under ambient conditions, trapped between the graphene sheets. The heating process drives a reorganisation of the solvent and Na molecules, then an evaporation of the solvent; however, the solvent loss is arrested by restacking of the graphene layers, leading to trapped solvent bubbles. Eventually, the bubbles rupture, releasing the remaining solvent and creating expanded graphite. These trapped dopants may provide useful property enhancements, but also potentially confound measurements of grafting efficiency in liquid-phase covalent functionalization experiments on 2D materials
Tracking advanced persistent threats in critical infrastructures through opinion dynamics
Advanced persistent threats pose a serious issue for modern industrial environments, due to their targeted and complex attack vectors that are difficult to detect. This is especially severe in critical infrastructures that are accelerating the integration of IT technologies. It is then essential to further develop effective monitoring and response systems that ensure the continuity of business to face the arising set of cyber-security threats. In this paper, we study the practical applicability of a novel technique based on opinion dynamics, that permits to trace the attack throughout all its stages along the network by correlating different anomalies measured over time, thereby taking the persistence of threats and the criticality of resources into consideration. The resulting information is of essential importance to monitor the overall health of the control system and cor- respondingly deploy accurate response procedures. Advanced Persistent Threat Detection Traceability Opinion Dynamics.Universidad de Málaga. Campus de Excelencia Internacional AndalucÃa Tech
Arsenic removal from natural groundwater using ‘green rust’: Solid phase stability and contaminant fate
Arsenic (As) contamination in groundwater remains a pressing global challenge. In this study, we evaluated the potential of green rust (GR), a redox-active iron phase frequently occurring in anoxic environments, to treat As contamination at a former wood preservation site. We performed long-term batch experiments by exposing synthetic GR sulfate (GRSO4) to As-free and As-spiked (6 mg L−1) natural groundwater at both 25 and 4 °C. At 25 °C, GRSO4 was metastable in As-free groundwater and transformed to GRCO3, and then fully to magnetite within 120 days; however, GRSO4 stability increased 7-fold by lowering the temperature to 4 °C, and 8-fold by adding As to the groundwater at 25 °C. Highest GRSO4 stability was observed when As was added to the groundwater at 4 °C. This stabilizing effect is explained by GR solubility being lowered by adsorbed As and/or lower temperatures, inhibiting partial GR dissolution required for transformation to GRCO3, and ultimately to magnetite. Despite these mineral transformations, all added As was removed from As-spiked samples within 120 days at 25 °C, while uptake was 2 times slower at 4 °C. Overall, we have successfully documented that GR is an important mineral substrate for As immobilization in anoxic subsurface environments
Intercalation of aromatic sulfonates in ‘green rust’ via ion exchange
‘Green rust’ intercalated with aromatic sulfonates can potentially be effective materials for the treatment of soil and groundwater polluted with chlorinated benzenes. We investigated the potential intercalation of benzene sulfonate (BzS) and 1,3-benzene disulfonate (BzDS) into green rust sulfate (GRSO4) via ion exchange. The GRSO4 reacted with various concentrations of sulfonates were characterized by X-ray diffraction, X-ray scattering and transmission electron microscopy. GR interacted with BzDS did not result in intercalation due to stearic hindrance and electrostatic repulsion. For BzS, mixtures of GRSO4 and GR-BzS (d001 = 14.3 Å) were obtained at molar equivalents of ion exchange capacity >5. The intercalation of BzS in the GR structure is limited (~18% intercalation) since BzS cannot fully replace SO42-. The BzS molecules are likely arranged in the interlayer as a dehydrated monolayer with the –SO3 groups facing away in alternate directions
Enhancing security and dependability of industrial networks with opinion dynamics
Opinion Dynamics poses a novel technique to accurately locate the patterns of an advanced attack against an industrial infrastructure, compared to traditional intrusion detection systems. This distributed solution provides pro table information to identify the most a ected areas within the network, which can be leveraged to design and deploy tailored response mechanisms that ensure the continuity of the service. In this work, we base on this multi-agent collaborative approach to propose a response technique that permits the secure delivery of messages across the network. For such goal, our contribution is twofold: rstly, we rede ne the existing algorithm to assess not only the compromise of nodes, but also the security and quality of service of communication links; secondly, we develop a routing protocol that prioritizes the secure paths throughout
the topology considering the information obtained from the detection system.Universidad de Málaga. Campus de Excelencia Internacional AndalucÃa Tec
Pharmacoeconomic analysis of adjuvant oral capecitabine vs intravenous 5-FU/LV in Dukes' C colon cancer: the X-ACT trial
Oral capecitabine (Xeloda<sup>®</sup>) is an effective drug with favourable safety in adjuvant and metastatic colorectal cancer. Oxaliplatin-based therapy is becoming standard for Dukes' C colon cancer in patients suitable for combination therapy, but is not yet approved by the UK National Institute for Health and Clinical Excellence (NICE) in the adjuvant setting. Adjuvant capecitabine is at least as effective as 5-fluorouracil/leucovorin (5-FU/LV), with significant superiority in relapse-free survival and a trend towards improved disease-free and overall survival. We assessed the cost-effectiveness of adjuvant capecitabine from payer (UK National Health Service (NHS)) and societal perspectives. We used clinical trial data and published sources to estimate incremental direct and societal costs and gains in quality-adjusted life months (QALMs). Acquisition costs were higher for capecitabine than 5-FU/LV, but higher 5-FU/LV administration costs resulted in 57% lower chemotherapy costs for capecitabine. Capecitabine vs 5-FU/LV-associated adverse events required fewer medications and hospitalisations (cost savings £3653). Societal costs, including patient travel/time costs, were reduced by >75% with capecitabine vs 5-FU/LV (cost savings £1318), with lifetime gain in QALMs of 9 months. Medical resource utilisation is significantly decreased with capecitabine vs 5-FU/LV, with cost savings to the NHS and society. Capecitabine is also projected to increase life expectancy vs 5-FU/LV. Cost savings and better outcomes make capecitabine a preferred adjuvant therapy for Dukes' C colon cancer. This pharmacoeconomic analysis strongly supports replacing 5-FU/LV with capecitabine in the adjuvant treatment of colon cancer in the UK
The effects of intermittent hypoxia training on hematological and aerobic performance in triathletes
The aim of the present research was to analyze modifications on hematological and aerobic performance parameters after a 7-week intermittent hypoxia training (IHT) program. Eighteen male trained triathletes were divided in two groups: an intermittent hypoxia training group (IHTG: n: 9; 26.0 ± 6.7 years; 173.3 ± 5.9 cm; 66.4 ± 5.9 kg; VO2max: 59.5 ± 5.0 ml/kg/min) that conducted a normoxic training plus an IHT and a control group (CG: n: 9; 29.3 ± 6.8 years; 174.9 ± 4.6 cm; 59.7 ± 6.8 kg; VO2max: 58.9 ± 4.5 ml/kg/min) that performed only a normoxic training. Training process was standardized across the two groups. The IHT program consisted of two 60-min sessions per week at intensities over the anaerobic threshold and atmospheric conditions between 14.5 and 15% FiO2. Before and after the 7-week training, aerobic performance in an incremental running test and hematological parameters were analyzed. After this training program, the IHTG showed higher hemoglobin and erythrocytes (p < 0.05) values than in the CG. In terms of physiological and performance variables, between the two groups no changes were found. The addition of an IHT program to normoxic training caused an improvement in hematological parameters but aerobic performance and physiological variables compared to similar training under normoxic conditions did not increase
- …