1,558 research outputs found

    Exhaled breath profiling for diagnosing acute respiratory distress syndrome

    Get PDF
    The acute respiratory distress syndrome (ARDS) is a common, devastating complication of critical illness that is characterized by pulmonary injury and inflammation. The clinical diagnosis may be improved by means of objective biological markers. Electronic nose (eNose) technology can rapidly and non-invasively provide breath prints, which are profiles of volatile metabolites in the exhaled breath. We hypothesized that breath prints could facilitate accurate diagnosis of ARDS in intubated and ventilated intensive care unit (ICU) patients. Prospective single-center cohort study with training and temporal external validation cohort. Breath of newly intubated and mechanically ventilated ICU-patients was analyzed using an electronic nose within 24 hours after admission. ARDS was diagnosed and classified by the Berlin clinical consensus definition. The eNose was trained to recognize ARDS in a training cohort and the diagnostic performance was evaluated in a temporal external validation cohort. In the training cohort (40 patients with ARDS versus 66 controls) the diagnostic model for ARDS showed a moderate discrimination, with an area under the receiver-operator characteristic curve (AUC-ROC) of 0.72 (95%-confidence interval (CI): 0.63-0.82). In the external validation cohort (18 patients with ARDS versus 26 controls) the AUC-ROC was 0.71 [95%-CI: 0.54 - 0.87]. Restricting discrimination to patients with moderate or severe ARDS versus controls resulted in an AUC-ROC of 0.80 [95%-CI: 0.70 - 0.90]. The exhaled breath profile from patients with cardiopulmonary edema and pneumonia was different from that of patients with moderate/severe ARDS. An electronic nose can rapidly and non-invasively discriminate between patients with and without ARDS with modest accuracy. Diagnostic accuracy increased when only moderate and severe ARDS patients were considered. This implicates that breath analysis may allow for rapid, bedside detection of ARDS, especially if our findings are reproduced using continuous exhaled breath profiling. NTR2750, registered 11 February 201

    Native Wildlife Adjust Activity Patterns to Temporally Avoid Wild Pigs

    Get PDF
    Wildlife species have defined activity patterns that are important for conserving biological rhythms and altering these rhythms can cause physiological stress. Species often shift activity patterns to minimize predation risks or to temporally partition competition. Thus, when a new predator or competitor is introduced into a community, the activity patterns of the whole community could be affected, and this effect may increase the stress wild pigs cause to native wildlife. To test the hypothesis that wild pig activity patterns affect those of native wildlife, we monitored activity patterns of native wildlife and wild pigs before and after aerial gunning events that manipulated pig activity patterns. Using the Statistical R-package – Overlap option, we generated species activity curves which showed aerial gunning caused a substantial shift in wild pig activity patterns from peaking near sunrise to peaking near sunset. Native species not directly at risk from aerial gunning, such as raccoon, armadillo, rabbits, squirrels, and opossum, shifted their activity patterns to a lesser degree than that of pigs, but most species adjusted activity peaks to favor lulls in pig activity. Thus, by manipulating swine activity patterns we provide evidence that wild pigs affect the activity patterns of many native wildlife species. Not only does our data demonstrate the flexibility of pigs to alter activity patterns to avoid removal, it also indicates that these animals cause an additional unappreciated stress on native wildlife by altering their biological rhythm

    Competing biosecurity and risk rationalities in the Chittagong poultry commodity chain, Bangladesh

    Get PDF
    This paper anthropologically explores how key actors in the Chittagong live bird trading network perceive biosecurity and risk in relation to avian influenza between production sites, market maker scenes and outlets. They pay attention to the past and the present, rather than the future, downplaying the need for strict risk management, as outbreaks have not been reported frequently for a number of years. This is analysed as ‘temporalities of risk perception regarding biosecurity’, through Black Swan theory, the idea that unexpected events with major effects are often inappropriately rationalized (Taleb in The Black Swan. The impact of the highly improbable, Random House, New York, 2007). This incorporates a sociocultural perspective on risk, emphasizing the contexts in which risk is understood, lived, embodied and experienced. Their risk calculation is explained in terms of social consent, practical intelligibility and convergence of constraints and motivation. The pragmatic and practical orientation towards risk stands in contrast to how risk is calculated in the avian influenza preparedness paradigm. It is argued that disease risk on the ground has become a normalized part of everyday business, as implied in Black Swan theory. Risk which is calculated retrospectively is unlikely to encourage investment in biosecurity and, thereby, points to the danger of unpredictable outlier events

    On the Importance of Countergradients for the Development of Retinotopy: Insights from a Generalised Gierer Model

    Get PDF
    During the development of the topographic map from vertebrate retina to superior colliculus (SC), EphA receptors are expressed in a gradient along the nasotemporal retinal axis. Their ligands, ephrin-As, are expressed in a gradient along the rostrocaudal axis of the SC. Countergradients of ephrin-As in the retina and EphAs in the SC are also expressed. Disruption of any of these gradients leads to mapping errors. Gierer's (1981) model, which uses well-matched pairs of gradients and countergradients to establish the mapping, can account for the formation of wild type maps, but not the double maps found in EphA knock-in experiments. I show that these maps can be explained by models, such as Gierer's (1983), which have gradients and no countergradients, together with a powerful compensatory mechanism that helps to distribute connections evenly over the target region. However, this type of model cannot explain mapping errors found when the countergradients are knocked out partially. I examine the relative importance of countergradients as against compensatory mechanisms by generalising Gierer's (1983) model so that the strength of compensation is adjustable. Either matching gradients and countergradients alone or poorly matching gradients and countergradients together with a strong compensatory mechanism are sufficient to establish an ordered mapping. With a weaker compensatory mechanism, gradients without countergradients lead to a poorer map, but the addition of countergradients improves the mapping. This model produces the double maps in simulated EphA knock-in experiments and a map consistent with the Math5 knock-out phenotype. Simulations of a set of phenotypes from the literature substantiate the finding that countergradients and compensation can be traded off against each other to give similar maps. I conclude that a successful model of retinotopy should contain countergradients and some form of compensation mechanism, but not in the strong form put forward by Gierer

    Automatic Network Fingerprinting through Single-Node Motifs

    Get PDF
    Complex networks have been characterised by their specific connectivity patterns (network motifs), but their building blocks can also be identified and described by node-motifs---a combination of local network features. One technique to identify single node-motifs has been presented by Costa et al. (L. D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser, Europhys. Lett., 87, 1, 2009). Here, we first suggest improvements to the method including how its parameters can be determined automatically. Such automatic routines make high-throughput studies of many networks feasible. Second, the new routines are validated in different network-series. Third, we provide an example of how the method can be used to analyse network time-series. In conclusion, we provide a robust method for systematically discovering and classifying characteristic nodes of a network. In contrast to classical motif analysis, our approach can identify individual components (here: nodes) that are specific to a network. Such special nodes, as hubs before, might be found to play critical roles in real-world networks.Comment: 16 pages (4 figures) plus supporting information 8 pages (5 figures

    Symbols of One-Loop Integrals From Mixed Tate Motives

    Full text link
    We use a result on mixed Tate motives due to Goncharov (arXiv:alg-geom/9601021) to show that the symbol of an arbitrary one-loop 2m-gon integral in 2m dimensions may be read off directly from its Feynman parameterization. The algorithm proceeds via recursion in m seeded by the well-known box integrals in four dimensions. As a simple application of this method we write down the symbol of a three-mass hexagon integral in six dimensions.Comment: 13 pages, v2: minor typos correcte

    Changing indications and socio-demographic determinants of (adeno)tonsillectomy among children in England--are they linked? A retrospective analysis of hospital data.

    Get PDF
    OBJECTIVE: To assess whether increased awareness and diagnosis of obstructive sleep apnoea syndrome (OSAS) and national guidance on tonsillectomy for recurrent tonsillitis have influenced the socio-demographic profile of children who underwent tonsillectomy over the last decade. METHOD: Retrospective time-trends study of Hospital Episodes Statistics data. We examined the age, sex and deprivation level, alongside OSAS diagnoses, among children aged <16 years who underwent (adeno)tonsillectomy in England between 2001/2 and 2011/12. RESULTS: Among children aged <16 years, there were 29,697 and 27,732 (adeno)tonsillectomies performed in 2001/2 and 2011/12, respectively. The median age at (adeno)tonsillectomy decreased from 7 (IQR: 5-11) to 5 (IQR: 4-9) years over the decade. (Adeno)tonsillectomy rates among children aged 4-15 years decreased by 14% from 350 (95%CI: 346-354) in 2001/2 to 300 (95%CI: 296-303) per 100,000 children in 2011/12. However, (adeno)tonsillectomy rates among children aged <4 years increased by 58% from 135 (95%CI: 131-140) to 213 (95%CI 208-219) per 100,000 children in 2001/2 and 2011/2, respectively. OSAS diagnoses among children aged <4 years who underwent surgery increased from 18% to 39% between these study years and the proportion of children aged <4 years with OSAS from the most deprived areas increased from 5% to 12%, respectively. CONCLUSIONS: (Adeno)tonsillectomy rates declined among children aged 4-15 years, which reflects national guidelines recommending the restriction of the operation to children with more severe recurrent throat infections. However, (adeno)tonsillectomy rates among pre-school children substantially increased over the past decade and one in five children undergoing the operation was aged <4 years in 2011/12.The increase in surgery rates in younger children is likely to have been driven by increased awareness and detection of OSAS, particularly among children from the most deprived areas

    A simple approach to counterterms in N=8 supergravity

    Get PDF
    We present a simple systematic method to study candidate counterterms in N=8 supergravity. Complicated details of the counterterm operators are avoided because we work with the on-shell matrix elements they produce. All n-point matrix elements of an independent SUSY invariant operator of the form D^{2k} R^n +... must be local and satisfy SUSY Ward identities. These are strong constraints, and we test directly whether or not matrix elements with these properties can be constructed. If not, then the operator does not have a supersymmetrization, and it is excluded as a potential counterterm. For n>4, we find that R^n, D^2 R^n, D^4 R^n, and D^6 R^n are excluded as counterterms of MHV amplitudes, while only R^n and D^2 R^n are excluded at the NMHV level. As a consequence, for loop order L<7, there are no independent D^{2k}R^n counterterms with n>4. If an operator is not ruled out, our method constructs an explicit superamplitude for its matrix elements. This is done for the 7-loop D^4 R^6 operator at the NMHV level and in other cases. We also initiate the study of counterterms without leading pure-graviton matrix elements, which can occur beyond the MHV level. The landscape of excluded/allowed candidate counterterms is summarized in a colorful chart.Comment: 25 pages, 1 figure, published versio

    Neural development features: Spatio-temporal development of the Caenorhabditis elegans neuronal network

    Full text link
    The nematode Caenorhabditis elegans, with information on neural connectivity, three-dimensional position and cell linage provides a unique system for understanding the development of neural networks. Although C. elegans has been widely studied in the past, we present the first statistical study from a developmental perspective, with findings that raise interesting suggestions on the establishment of long-distance connections and network hubs. Here, we analyze the neuro-development for temporal and spatial features, using birth times of neurons and their three-dimensional positions. Comparisons of growth in C. elegans with random spatial network growth highlight two findings relevant to neural network development. First, most neurons which are linked by long-distance connections are born around the same time and early on, suggesting the possibility of early contact or interaction between connected neurons during development. Second, early-born neurons are more highly connected (tendency to form hubs) than later born neurons. This indicates that the longer time frame available to them might underlie high connectivity. Both outcomes are not observed for random connection formation. The study finds that around one-third of electrically coupled long-range connections are late forming, raising the question of what mechanisms are involved in ensuring their accuracy, particularly in light of the extremely invariant connectivity observed in C. elegans. In conclusion, the sequence of neural network development highlights the possibility of early contact or interaction in securing long-distance and high-degree connectivity

    Integrating the promotion of physical activity within a smoking cessation programme: Findings from collaborative action research in UK Stop Smoking Services

    Get PDF
    Background: Within the framework of collaborative action research, the aim was to explore the feasibility of developing and embedding physical activity promotion as a smoking cessation aid within UK 6/7-week National Health Service (NHS) Stop Smoking Services. Methods: In Phase 1 three initial cycles of collaborative action research (observation, reflection, planning, implementation and re-evaluation), in an urban Stop Smoking Service, led to the development of an integrated intervention in which physical activity was promoted as a cessation aid, with the support of a theoretically based self-help guide, and self monitoring using pedometers. In Phase 2 advisors underwent training and offered the intervention, and changes in physical activity promoting behaviour and beliefs were monitored. Also, changes in clients’ stage of readiness to use physical activity as a cessation aid, physical activity beliefs and behaviour and physical activity levels were assessed, among those who attended the clinic at 4-week post-quit. Qualitative data were collected, in the form of clinic observation, informal interviews with advisors and field notes. Results: The integrated intervention emerged through cycles of collaboration as something quite different to previous practice. Based on field notes, there were many positive elements associated with the integrated intervention in Phase 2. Self-reported advisors’ physical activity promoting behaviour increased as a result of training and adapting to the intervention. There was a significant advancement in clients’ stage of readiness to use physical activity as a smoking cessation aid. Conclusions: Collaboration with advisors was key in ensuring that a feasible intervention was developed as an aid to smoking cessation. There is scope to further develop tailored support to increasing physical activity and smoking cessation, mediated through changes in perceptions about the benefits of, and confidence to do physical activity
    corecore