2,626 research outputs found

    Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing.

    Get PDF
    Organismal functions are size-dependent whenever body surfaces supply body volumes. Larger organisms can develop strongly folded internal surfaces for enhanced diffusion, but in many cases areas cannot be folded so that their enlargement is constrained by anatomy, presenting a problem for larger animals. Here, we study the allometry of adhesive pad area in 225 climbing animal species, covering more than seven orders of magnitude in weight. Across all taxa, adhesive pad area showed extreme positive allometry and scaled with weight, implying a 200-fold increase of relative pad area from mites to geckos. However, allometric scaling coefficients for pad area systematically decreased with taxonomic level and were close to isometry when evolutionary history was accounted for, indicating that the substantial anatomical changes required to achieve this increase in relative pad area are limited by phylogenetic constraints. Using a comparative phylogenetic approach, we found that the departure from isometry is almost exclusively caused by large differences in size-corrected pad area between arthropods and vertebrates. To mitigate the expected decrease of weight-specific adhesion within closely related taxa where pad area scaled close to isometry, data for several taxa suggest that the pads' adhesive strength increased for larger animals. The combination of adjustments in relative pad area for distantly related taxa and changes in adhesive strength for closely related groups helps explain how climbing with adhesive pads has evolved in animals varying over seven orders of magnitude in body weight. Our results illustrate the size limits of adhesion-based climbing, with profound implications for large-scale bio-inspired adhesives.We are sincerely grateful to all our colleagues who readily shared published and unpublished data with us: Aaron M. Bauer, Jon Barnes, Niall Crawford, Thomas Endlein, Hanns Hagen Goetzke, Thomas E. Macrini, Anthony P. Russell & Joanna M. Smith. We also thank Casey Gilman, Dylan Briggs, Irina Showalter, Dan King and Mike Imburgia for their assistance with the collection of gecko toepad data. This study was supported by research grants from the UK Biotechnology and Biological Sciences Research Council (BB/I008667/1) to WF, the Human Frontier Science Programme (RGP0034/2012) to DI, AJC and WF, the Denman Baynes Senior Research Fellowship to DL and a Discovery Early Career Research Fellowship (DE120101503) to CJC.This is the author accepted manuscript. The final version is available from the National Academy of Sciences via http://dx.doi.org/ 10.1073/pnas.151945911

    Stepping onto the unknown: reflexes of the foot and ankle while stepping with perturbed perceptions of terrain

    Get PDF
    This is the author accepted manuscript. The final version is available from the Royal Society via e the DOI in this recordData availability: The data from this study and the code to generate the figures and statistics are publically available at 10.6084/m9.figshare.12986223Unanticipated variations in terrain can destabilize the body. The foot is the primary interface with the ground and we know that cutaneous reflexes provide important sensory feedback. However, little is known about the contribution of stretch reflexes from the muscles within the foot to upright stability. We used intramuscular electromyography measurements of the foot muscles flexor digitorum brevis (FDB) and abductor hallucis (AH) to show for the first time how their short latency stretch reflex response (SLR) may play an important role in responding to stepping perturbations. The SLR of FDB and AH was highest for downwards steps and lowest for upwards steps, with the response amplitude for level and compliant steps in between. When the type of terrain was unknown or unexpected to the participant, the SLR of AH and the ankle muscle soleus tended to decrease. We found significant relationships between the contact kinematics and forces of the leg and the SLR, but a person’s expectation still had significant effects even after accounting for these relationships. Motor control models of short latency body stabilization should not only include local muscle dynamics, but also predictions of terrain based on higher-level information such as from vision or memory

    A Novel Ultrasonic Method for Accurate Characterization of Microstructural Gradients in Monolithic and Composite Tubular Structures

    Get PDF
    Prior studies have shown that ultrasonic velocity/time-of-flight imaging that uses back surface echo reflections to gauge volumetric material quality is well suited (perhaps more so than is the commonlyused peak amplitude c-scanning) for quantitative characterization of microstructural gradients. Such gradients include those due to pore fraction, density, fiber fraction, and chemical composition variations [11–15]. Variations in these microstructural factors can affect the uniformity of physical performance (including mechanical [stiffness, strength], thermal [conductivity], and electrical [conductivity, superconducting transition temperature], etc. performance) of monolithic and composite [1,3,6,12]. A weakness of conventional ultrasonic velocity/time-of-flight imaging (as well as to a lesser extent ultrasonic peak amplitude c-scanning where back surface echoes are gated [17] is that the image shows the effects of thickness as well as microstructural variations unless the part is uniformly thick. This limits this type of imaging’s usefulness in practical applications. The effect of thickness is easily observed from the equation for pulse-echo waveform time-of-flight (2τ) between the first front surface echo (FS) and the first back surface echo (B1), or between two successive back surface echoes where: 2τ=(2d)V (1) where d is the sample thickness and V is the velocity of ultrasound in the material. Interpretation of the time-of-flight image is difficult as thickness variation effects can mask or overemphasize the true microstructural variation portrayed in the image of a part containing thickness variations. Thickness effects on time-of-flight can also be interpreted by rearranging equation (1) to calculate velocity: V=(2d)2τ (2) such that velocity is inversely proportional to time-of-flight. Velocity and time-of-flight maps will be affected similarly (although inversely in terms of magnitude) by thickness variations, and velocity maps are used in this investigation to indicate time-of-flight variations.</p

    A Dynamic Knowledge Management Framework for the High Value Manufacturing Industry

    Get PDF
    Dynamic Knowledge Management (KM) is a combination of cultural and technological factors, including the cultural factors of people and their motivations, technological factors of content and infrastructure and, where these both come together, interface factors. In this paper a Dynamic KM framework is described in the context of employees being motivated to create profit for their company through product development in high value manufacturing. It is reported how the framework was discussed during a meeting of the collaborating company’s (BAE Systems) project stakeholders. Participants agreed the framework would have most benefit at the start of the product lifecycle before key decisions were made. The framework has been designed to support organisational learning and to reward employees that improve the position of the company in the market place

    Neurospora from natural populations: Population genomics insights into the Life history of a model microbial Eukaryote

    Get PDF
    The ascomycete filamentous fungus Neurospora crassa played a historic role in experimental biology and became a model system for genetic research. Stimulated by a systematic effort to collect wild strains initiated by Stanford geneticist David Perkins, the genus Neurospora has also become a basic model for the study of evolutionary processes, speciation, and population biology. In this chapter, we will first trace the history that brought Neurospora into the era of population genomics. We will then cover the major contributions of population genomic investigations using Neurospora to our understanding of microbial biogeography and speciation, and review recent work using population genomics and genome-wide association mapping that illustrates the unique potential of Neurospora as a model for identifying the genetic basis of (potentially adaptive) phenotypes in filamentous fungi. The advent of population genomics has contributed to firmly establish Neurospora as a complete model system and we hope our review will entice biologists to include Neurospora in their research

    Non-invasive evaluation of ventricular refractoriness and its dispersion during ventricular fibrillation in patients with implantable cardioverter defibrillator

    Get PDF
    BACKGROUND: Local ventricular refractoriness and its dispersion during ventricular fibrillation (VF) have not been well evaluated, due to methodological difficulties. METHODS: In this study, a non-invasive method was used in evaluation of local ventricular refractoriness and its dispersion during induced VF in 11 patients with VF and/or polymorphic ventricular tachycardia (VT) who have implanted an implantable cardioverter defibrillator (ICD). Bipolar electrograms were simultaneously recorded from the lower oesophagus behind the posterior left ventricle (LV) via an oesophageal electrode and from the right ventricular (RV) apex via telemetry from the implanted ICD. VF intervals were used as an estimate of the ventricular effective refractory period (VERP). In 6 patients, VERP was also measured during sinus rhythm at the RV apex and outflow tract (RVOT) using conventional extra stimulus technique. RESULTS: Electrograms recorded from the RV apex and the lower esophagus behind the posterior LV manifested distinct differences of the local ventricular activities. The estimated VERPs during induced VF in the RV apex were significantly shorter than that measured during sinus rhythm using extra stimulus technique. The maximal dispersion of the estimated VERPs during induced VF between the RV apex and posterior LV was that of 10 percentile VF interval (40 ± 27 ms), that is markedly greater than the previously reported dispersion of ventricular repolarization without malignant ventricular arrhythmias (30–36 ms). CONCLUSIONS: This study verified the feasibility of recording local ventricular activities via oesophageal electrode and via telemetry from an implanted ICD and the usefulness of VF intervals obtained using this non-invasive technique in evaluation of the dispersion of refractoriness in patients with ICD implantation

    Pair-breaking quantum phase transition in superconducting nanowires

    Full text link
    A quantum phase transition (QPT) between distinct ground states of matter is a wide-spread phenomenon in nature, yet there are only a few experimentally accessible systems where the microscopic mechanism of the transition can be tested and understood. These cases are unique and form the experimentally established foundation for our understanding of quantum critical phenomena. Here we report the discovery that a magnetic-field-driven QPT in superconducting nanowires - a prototypical 1d-system - can be fully explained by the critical theory of pair-breaking transitions characterized by a correlation length exponent ν1\nu \approx 1 and dynamic critical exponent z2z \approx 2. We find that in the quantum critical regime, the electrical conductivity is in agreement with a theoretically predicted scaling function and, moreover, that the theory quantitatively describes the dependence of conductivity on the critical temperature, field magnitude and orientation, nanowire cross sectional area, and microscopic parameters of the nanowire material. At the critical field, the conductivity follows a T(d2)/zT^{(d-2)/z} dependence predicted by phenomenological scaling theories and more recently obtained within a holographic framework. Our work uncovers the microscopic processes governing the transition: The pair-breaking effect of the magnetic field on interacting Cooper pairs overdamped by their coupling to electronic degrees of freedom. It also reveals the universal character of continuous quantum phase transitions.Comment: 22 pages, 5 figure

    Severity of acute hepatitis and its outcome in patients with dengue fever in a tertiary care hospital Karachi, Pakistan (South Asia)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Liver injury due to dengue viral infection is not uncommon. Acute liver injury is a severe complicating factor in dengue, predisposing to life-threatening hemorrhage, Disseminated Intravascular Coagulation (DIC) and encephalopathy. Therefore we sought to determine the frequency of hepatitis in dengue infection and to compare the outcome (length of stay, in hospital mortality, complications) between patients of Dengue who have mild/moderate (ALT 23-300 IU/L) v/s severe acute hepatitis (ALT > 300 IU/L).</p> <p>Methods</p> <p>A Cohort study of inpatients with dengue viral infection done at Aga Khan University Hospital Karachi. All patients (≥ 14 yrs age) admitted with diagnosis of Dengue Fever (DF), Dengue Hemorrhagic Fever (DHF) or Dengue Shock Syndrome (DSS) were included. Chi square test was used to compare categorical variables and fischer exact test where applicable. Survival analysis (Cox regression and log rank) for primary outcome was done. Student t test was used to compare continuous variables. A p value of less than or equal to 0.05 was taken as significant.</p> <p>Results</p> <p>Six hundred and ninety nine patients were enrolled, including 87% (605) patients with DF and 13% (94) patients with DHF or DSS. Liver functions tests showed median ALT of 88.50 IU/L; IQR 43.25-188 IU/L, median AST of 174 IU/L; IQR 87-371.5 IU/L and median T.Bil of 0.8 mg/dl; IQR 0.6-1.3 mg/dl. Seventy one percent (496) had mild to moderate hepatitis and 15% (103) had severe hepatitis. Mean length of stay (LOS) in patients with mild/moderate hepatitis was 3.63 days v.s 4.3 days in those with severe hepatitis (P value 0.002). Overall mortality was 33.3% (n = 6) in mild/moderate hepatitis vs 66.7% (n = 12) in severe hepatitis group (p value < 0.001). Cox regression analysis also showed significantly higher mortality in severe hepatitis group (H.R (4.91; 95% CI 1.74-13.87 and P value 0.003) and in DHF/DSS (5.43; CI 1.86-15.84 and P value 0.002). There was a significant difference for the complications like Bleeding (P value < 0.001), Acute Renal failure (ARF) (P value 0.002), Acalculus cholecystitis (P value 0.04) and encephalopathy (P value 0.02) in mild/moderate and Severe hepatitis groups respectively.</p> <p>Conclusion</p> <p>Severe hepatitis (SGPT>300IU) in Dengue is associated with prolonged LOS, mortality, bleeding and RF.</p

    Prenatal hypoxia induces increased cardiac contractility on a background of decreased capillary density.

    Get PDF
    Background: Chronic hypoxia in utero (CHU) is one of the most common insults to fetal development and may be associated with poor cardiac recovery from ischaemia-reperfusion injury,yet the effects on normal cardiac mechanical performance are poorly understood. Methods: Pregnant female wistar rats were exposed to hypoxia (12% oxygen, balance nitrogen)for days 10–20 of pregnancy. Pups were born into normal room air and weaned normally. At 10 weeks of age, hearts were excised under anaesthesia and underwent retrograde 'Langendorff' perfusion. Mechanical performance was measured at constant filling pressure (100 cm H2O) with intraventricular balloon. Left ventricular free wall was dissected away and capillary density estimated following alkaline phosphatase staining. Expression of SERCA2a and Nitric Oxide Synthases (NOS) proteins were estimated by immunoblotting. Results: CHU significantly increased body mass (P < 0.001) compared with age-matched control rats but was without effect on relative cardiac mass. For incremental increases in left ventricular balloon volume, diastolic pressure was preserved. However, systolic pressure was significantly greater following CHU for balloon volume = 50 μl (P < 0.01) and up to 200 μl (P < 0.05). For higher balloon volumes systolic pressure was not significantly different from control. Developed pressures were correspondingly increased relative to controls for balloon volumes up to 250 μl (P < 0.05).Left ventricular free wall capillary density was significantly decreased in both epicardium (18%; P <0.05) and endocardium (11%; P < 0.05) despite preserved coronary flow. Western blot analysis revealed no change to the expression of SERCA2a or nNOS but immuno-detectable eNOS protein was significantly decreased (P < 0.001) in cardiac tissue following chronic hypoxia in utero. Conclusion: These data offer potential mechanisms for poor recovery following ischaemia, including decreased coronary flow reserve and impaired angiogenesis with subsequent detrimental effects of post-natal cardiac performance

    Pyroglutamate Abeta pathology in APP/PS1KI mice, sporadic and familial Alzheimer’s disease cases

    Get PDF
    The presence of AβpE3 (N-terminal truncated Aβ starting with pyroglutamate) in Alzheimer’s disease (AD) has received considerable attention since the discovery that this peptide represents a dominant fraction of Aβ peptides in senile plaques of AD brains. This was later confirmed by other reports investigating AD and Down’s syndrome postmortem brain tissue. Importantly, AβpE3 has a higher aggregation propensity, and stability, and shows an increased toxicity compared to full-length Aβ. We have recently shown that intraneuronal accumulation of AβpE3 peptides induces a severe neuron loss and an associated neurological phenotype in the TBA2 mouse model for AD. Given the increasing interest in AβpE3, we have generated two novel monoclonal antibodies which were characterized as highly specific for AβpE3 peptides and herein used to analyze plaque deposition in APP/PS1KI mice, an AD model with severe neuron loss and learning deficits. This was compared with the plaque pattern present in brain tissue from sporadic and familial AD cases. Abundant plaques positive for AβpE3 were present in patients with sporadic AD and familial AD including those carrying mutations in APP (arctic and Swedish) and PS1. Interestingly, in APP/PS1KI mice we observed a continuous increase in AβpE3 plaque load with increasing age, while the density for Aβ1-x plaques declined with aging. We therefore assume that, in particular, the peptides starting with position 1 of Aβ are N-truncated as disease progresses, and that, AβpE3 positive plaques are resistant to age-dependent degradation likely due to their high stability and propensity to aggregate
    corecore