958 research outputs found

    Lipid membrane-mediated attraction between curvature inducing objects

    Get PDF
    The interplay of membrane proteins is vital for many biological processes, such as cellular transport, cell division, and signal transduction between nerve cells. Theoretical considerations have led to the idea that the membrane itself mediates protein self-organization in these processes through minimization of membrane curvature energy. Here, we present a combined experimental and numerical study in which we quantify these interactions directly for the first time. In our experimental model system we control the deformation of a lipid membrane by adhering colloidal particles. Using confocal microscopy, we establish that these membrane deformations cause an attractive interaction force leading to reversible binding. The attraction extends over 2.5 times the particle diameter and has a strength of three times the thermal energy (−3.3 kBT). Coarse-grained Monte-Carlo simulations of the system are in excellent agreement with the experimental results and prove that the measured interaction is independent of length scale. Our combined experimental and numerical results reveal membrane curvature as a common physical origin for interactions between any membrane-deforming objects, from nanometre-sized proteins to micrometre-sized particles

    Self-assembly of Microcapsules via Colloidal Bond Hybridization and Anisotropy

    Full text link
    Particles with directional interactions are promising building blocks for new functional materials and may serve as models for biological structures. Mutually attractive nanoparticles that are deformable due to flexible surface groups, for example, may spontaneously order themselves into strings, sheets and large vesicles. Furthermore, anisotropic colloids with attractive patches can self-assemble into open lattices and colloidal equivalents of molecules and micelles. However, model systems that combine mutual attraction, anisotropy, and deformability have---to the best of our knowledge---not been realized. Here, we synthesize colloidal particles that combine these three characteristics and obtain self-assembled microcapsules. We propose that mutual attraction and deformability induce directional interactions via colloidal bond hybridization. Our particles contain both mutually attractive and repulsive surface groups that are flexible. Analogous to the simplest chemical bond, where two isotropic orbitals hybridize into the molecular orbital of H2, these flexible groups redistribute upon binding. Via colloidal bond hybridization, isotropic spheres self-assemble into planar monolayers, while anisotropic snowman-like particles self-assemble into hollow monolayer microcapsules. A modest change of the building blocks thus results in a significant leap in the complexity of the self-assembled structures. In other words, these relatively simple building blocks self-assemble into dramatically more complex structures than similar particles that are isotropic or non-deformable

    Are Zinc-Finger Domains of Protein Kinase C Dynamic Structures That Unfold by Lipid or Redox Activation?

    Full text link
    Protein kinase C (PKC) is activated by lipid second messengers or redox action, raising the question whether these activation modes involve the same or alternate mechanisms. Here we show that both lipid activators and oxidation target the zinc-finger domains of PKC, suggesting a unifying activation mechanism. We found that lipid agonist-binding or redox action leads to zinc release and disassembly of zinc fingers, thus triggering large-scale unfolding that underlies conversion to the active enzyme. These results suggest that PKC zinc fingers, originally considered purely structural devices, are in fact redox-sensitive flexible hinges, whose conformation is controlled both by redox conditions and lipid agonists. Antioxid. Redox Signal. 14, 757-766.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90473/1/ars-2E2010-2E3773.pd

    Dynamic Spatial Coding within the Dorsal Frontoparietal Network during a Visual Search Task

    Get PDF
    To what extent are the left and right visual hemifields spatially coded in the dorsal frontoparietal attention network? In many experiments with neglect patients, the left hemisphere shows a contralateral hemifield preference, whereas the right hemisphere represents both hemifields. This pattern of spatial coding is often used to explain the right-hemispheric dominance of lesions causing hemispatial neglect. However, pathophysiological mechanisms of hemispatial neglect are controversial because recent experiments on healthy subjects produced conflicting results regarding the spatial coding of visual hemifields. We used an fMRI paradigm that allowed us to distinguish two attentional subprocesses during a visual search task. Either within the left or right hemifield subjects first attended to stationary locations (spatial orienting) and then shifted their attentional focus to search for a target line. Dynamic changes in spatial coding of the left and right hemifields were observed within subregions of the dorsal front-parietal network: During stationary spatial orienting, we found the well-known spatial pattern described above, with a bilateral hemifield representation in the right hemisphere and a contralateral preference in the left hemisphere. However, during search, the right hemisphere had a contralateral preference and the left hemisphere equally represented both hemifields. This finding leads to novel perspectives regarding models of visuospatial attention and hemispatial neglect

    Stroke genetics: prospects for personalized medicine.

    Get PDF
    Epidemiologic evidence supports a genetic predisposition to stroke. Recent advances, primarily using the genome-wide association study approach, are transforming what we know about the genetics of multifactorial stroke, and are identifying novel stroke genes. The current findings are consistent with different stroke subtypes having different genetic architecture. These discoveries may identify novel pathways involved in stroke pathogenesis, and suggest new treatment approaches. However, the already identified genetic variants explain only a small proportion of overall stroke risk, and therefore are not currently useful in predicting risk for the individual patient. Such risk prediction may become a reality as identification of a greater number of stroke risk variants that explain the majority of genetic risk proceeds, and perhaps when information on rare variants, identified by whole-genome sequencing, is also incorporated into risk algorithms. Pharmacogenomics may offer the potential for earlier implementation of 'personalized genetic' medicine. Genetic variants affecting clopidogrel and warfarin metabolism may identify non-responders and reduce side-effects, but these approaches have not yet been widely adopted in clinical practice

    Adapting HIV prevention evidence-based interventions in practice settings: an interview study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evidence-based interventions that are being delivered in real-world settings are adapted to enhance the external validity of these interventions. The purpose of this study was to examine multiple intervention adaptations made during pre-implementation, implementation, maintenance, and evolution phases of human immunodeficiency virus HIV prevention technology transfer. We examined two important categories of adaptations -- modifications to key characteristics, such as activities or delivery methods of interventions and reinvention of the interventions including addition and deletion of core elements.</p> <p>Methods</p> <p>Study participants were thirty-four community-based organization staff who were implementing evidence-based interventions in Los Angeles, California. Participants were interviewed twice and interviews were professionally transcribed. Transcriptions were coded by two coders with good inter-rater reliability (kappa coefficient = 0.73). Sixty-two open-ended codes for adaptation activities, which were linked to 229 transcript segments, were categorized as modifications of key characteristics or reinvention.</p> <p>Results</p> <p>Participants described activities considered modifications to key characteristics and reinvention of evidence-based interventions during pre-implementation, implementation, and maintenance phases. None of the participants reported accessing technical assistance or guidance when reinventing their interventions. Staff executed many of the recommended steps for sound adaptation of these interventions for new populations and settings.</p> <p>Conclusion</p> <p>Staff reported modifying and reinventing interventions when translating HIV prevention programs into practice. Targeted technical assistance for formative evaluation should be focused on the pre-implementation phase during which frequent modifications occur. Continuous or repeated measurements of fidelity are recommended. Increased technical assistance and guidance are needed to ensure that reinventions are evaluated and consistent with the aims of the original interventions. Providing strategic technical assistance and written guidance can facilitate effective HIV prevention technology transfer of evidence-based interventions.</p

    Different genes interact with particulate matter and tobacco smoke exposure in affecting lung function decline in the general population

    Get PDF
    BACKGROUND: Oxidative stress related genes modify the effects of ambient air pollution or tobacco smoking on lung function decline. The impact of interactions might be substantial, but previous studies mostly focused on main effects of single genes. OBJECTIVES: We studied the interaction of both exposures with a broad set of oxidative-stress related candidate genes and pathways on lung function decline and contrasted interactions between exposures. METHODS: For 12679 single nucleotide polymorphisms (SNPs), change in forced expiratory volume in one second (FEV(1)), FEV(1) over forced vital capacity (FEV(1)/FVC), and mean forced expiratory flow between 25 and 75% of the FVC (FEF(25-75)) was regressed on interval exposure to particulate matter >10 microm in diameter (PM10) or packyears smoked (a), additive SNP effects (b), and interaction terms between (a) and (b) in 669 adults with GWAS data. Interaction p-values for 152 genes and 14 pathways were calculated by the adaptive rank truncation product (ARTP) method, and compared between exposures. Interaction effect sizes were contrasted for the strongest SNPs of nominally significant genes (p(interaction)>0.05). Replication was attempted for SNPs with MAF<10% in 3320 SAPALDIA participants without GWAS. RESULTS: On the SNP-level, rs2035268 in gene SNCA accelerated FEV(1)/FVC decline by 3.8% (p(interaction) = 2.5x10(-6)), and rs12190800 in PARK2 attenuated FEV1 decline by 95.1 ml p(interaction) = 9.7x10(-8)) over 11 years, while interacting with PM10. Genes and pathways nominally interacting with PM10 and packyears exposure differed substantially. Gene CRISP2 presented a significant interaction with PM10 (p(interaction) = 3.0x10(-4)) on FEV(1)/FVC decline. Pathway interactions were weak. Replications for the strongest SNPs in PARK2 and CRISP2 were not successful. CONCLUSIONS: Consistent with a stratified response to increasing oxidative stress, different genes and pathways potentially mediate PM10 and tobac smoke effects on lung function decline. Ignoring environmental exposures would miss these patterns, but achieving sufficient sample size and comparability across study samples is challengin

    Haplotype Reconstruction Error as a Classical Misclassification Problem: Introducing Sensitivity and Specificity as Error Measures

    Get PDF
    BACKGROUND: Statistically reconstructing haplotypes from single nucleotide polymorphism (SNP) genotypes, can lead to falsely classified haplotypes. This can be an issue when interpreting haplotype association results or when selecting subjects with certain haplotypes for subsequent functional studies. It was our aim to quantify haplotype reconstruction error and to provide tools for it. METHODS AND RESULTS: By numerous simulation scenarios, we systematically investigated several error measures, including discrepancy, error rate, and R(2), and introduced the sensitivity and specificity to this context. We exemplified several measures in the KORA study, a large population-based study from Southern Germany. We find that the specificity is slightly reduced only for common haplotypes, while the sensitivity was decreased for some, but not all rare haplotypes. The overall error rate was generally increasing with increasing number of loci, increasing minor allele frequency of SNPs, decreasing correlation between the alleles and increasing ambiguity. CONCLUSIONS: We conclude that, with the analytical approach presented here, haplotype-specific error measures can be computed to gain insight into the haplotype uncertainty. This method provides the information, if a specific risk haplotype can be expected to be reconstructed with rather no or high misclassification and thus on the magnitude of expected bias in association estimates. We also illustrate that sensitivity and specificity separate two dimensions of the haplotype reconstruction error, which completely describe the misclassification matrix and thus provide the prerequisite for methods accounting for misclassification

    Genetic risk variants associated with in situ breast cancer

    Get PDF
    INTRODUCTION: Breast cancer in situ (BCIS) diagnoses, a precursor lesion for invasive breast cancer, comprise about 20 % of all breast cancers (BC) in countries with screening programs. Family history of BC is considered one of the strongest risk factors for BCIS. METHODS: To evaluate the association of BC susceptibility loci with BCIS risk, we genotyped 39 single nucleotide polymorphisms (SNPs), associated with risk of invasive BC, in 1317 BCIS cases, 10,645 invasive BC cases, and 14,006 healthy controls in the National Cancer Institute's Breast and Prostate Cancer Cohort Consortium (BPC3). Using unconditional logistic regression models adjusted for age and study, we estimated the association of SNPs with BCIS using two different comparison groups: healthy controls and invasive BC subjects to investigate whether BCIS and BC share a common genetic profile. RESULTS: We found that five SNPs (CDKN2BAS-rs1011970, FGFR2-rs3750817, FGFR2-rs2981582, TNRC9-rs3803662, 5p12-rs10941679) were significantly associated with BCIS risk (P value adjusted for multiple comparisons &lt;0.0016). Comparing invasive BC and BCIS, the largest difference was for CDKN2BAS-rs1011970, which showed a positive association with BCIS (OR = 1.24, 95 % CI: 1.11-1.38, P = 1.27 x 10(-4)) and no association with invasive BC (OR = 1.03, 95 % CI: 0.99-1.07, P = 0.06), with a P value for case-case comparison of 0.006. Subgroup analyses investigating associations with ductal carcinoma in situ (DCIS) found similar associations, albeit less significant (OR = 1.25, 95 % CI: 1.09-1.42, P = 1.07 x 10(-3)). Additional risk analyses showed significant associations with invasive disease at the 0.05 level for 28 of the alleles and the OR estimates were consistent with those reported by other studies. CONCLUSIONS: Our study adds to the knowledge that several of the known BC susceptibility loci are risk factors for both BCIS and invasive BC, with the possible exception of rs1011970, a putatively functional SNP situated in the CDKN2BAS gene that may be a specific BCIS susceptibility locus

    Variation in LPA Is Associated with Lp(a) Levels in Three Populations from the Third National Health and Nutrition Examination Survey

    Get PDF
    The distribution of lipoprotein(a) [Lp(a)] levels can differ dramatically across diverse racial/ethnic populations. The extent to which genetic variation in LPA can explain these differences is not fully understood. To explore this, 19 LPA tagSNPs were genotyped in 7,159 participants from the Third National Health and Nutrition Examination Survey (NHANES III). NHANES III is a diverse population-based survey with DNA samples linked to hundreds of quantitative traits, including serum Lp(a). Tests of association between LPA variants and transformed Lp(a) levels were performed across the three different NHANES subpopulations (non-Hispanic whites, non-Hispanic blacks, and Mexican Americans). At a significance threshold of p<0.0001, 15 of the 19 SNPs tested were strongly associated with Lp(a) levels in at least one subpopulation, six in at least two subpopulations, and none in all three subpopulations. In non-Hispanic whites, three variants were associated with Lp(a) levels, including previously known rs6919246 (p = 1.18×10−30). Additionally, 12 and 6 variants had significant associations in non-Hispanic blacks and Mexican Americans, respectively. The additive effects of these associated alleles explained up to 11% of the variance observed for Lp(a) levels in the different racial/ethnic populations. The findings reported here replicate previous candidate gene and genome-wide association studies for Lp(a) levels in European-descent populations and extend these findings to other populations. While we demonstrate that LPA is an important contributor to Lp(a) levels regardless of race/ethnicity, the lack of generalization of associations across all subpopulations suggests that specific LPA variants may be contributing to the observed Lp(a) between-population variance
    • …
    corecore