324 research outputs found

    Student nurses’ experience of, and attitudes toward care of the dying: a cross sectional study

    Get PDF
    Background: Nurses are the professional group with the greatest contact with those at the end of life and their attitudes toward the care of the dying is important in care delivery. Aim: We investigated the relationship between student nurses’ attitudes towards care of the dying and (i) demographics, (ii) course factors, and (iii) experience of caring for people who are dying. Design: A cross sectional survey using the Frommelt Attitude Toward Care of the Dying (FATCOD) scale to measure respondents’ attitudes. Setting/participants: Nursing students studying at a university in the United Kingdom. Results: A total of 567 completed questionnaires were returned, with 91.9% of respondents being classed as having a positive attitude toward care of the dying (FACTCOD score ≥65). In adjusted analysis, higher (more positive) FATCOD scores were associated with time on course and experience of caring for the dying. Third year students had a score of 2.18 points greater than those in their first year (95% CI 0.36 to 4.01, p=0.017). The adjusted differences in scores were 2.22 points greater for those who had prepared a dead body (95% CI 0.57 to 3.87, p=0.008), 2.95 points greater for those who had cared for a dying patient (95% CI 1.09 to 4.08 p=0.002), and 2.03 points greater for those who had cared for a dying relative or friend (95% CI 0.69 to 3.37, p=0.003). Conclusion: Length of time in education and practical experience of caring for dying individuals are independently associated with positive attitudes towards care of the dying among student nurses

    A Systems Biology Approach Identifies a R2R3 MYB Gene Subfamily with Distinct and Overlapping Functions in Regulation of Aliphatic Glucosinolates

    Get PDF
    BACKGROUND: Glucosinolates are natural metabolites in the order Brassicales that defend plants against both herbivores and pathogens and can attract specialized insects. Knowledge about the genes controlling glucosinolate regulation is limited. Here, we identify three R2R3 MYB transcription factors regulating aliphatic glucosinolate biosynthesis in Arabidopsis by combining several systems biology tools. METHODOLOGY/PRINCIPAL FINDINGS: MYB28 was identified as a candidate regulator of aliphatic glucosinolates based on its co-localization within a genomic region controlling variation both in aliphatic glucosinolate content (metabolite QTL) and in transcript level for genes involved in the biosynthesis of aliphatic glucosinolates (expression QTL), as well as its co-expression with genes in aliphatic glucosinolate biosynthesis. A phylogenetic analysis with the R2R3 motif of MYB28 showed that it and two homologues, MYB29 and MYB76, were members of an Arabidopsis-specific clade that included three characterized regulators of indole glucosinolates. Over-expression of the individual MYB genes showed that they all had the capacity to increase the production of aliphatic glucosinolates in leaves and seeds and induce gene expression of aliphatic biosynthetic genes within leaves. Analysis of leaves and seeds of single knockout mutants showed that mutants of MYB29 and MYB76 have reductions in only short-chained aliphatic glucosinolates whereas a mutant in MYB28 has reductions in both short- and long-chained aliphatic glucosinolates. Furthermore, analysis of a double knockout in MYB28 and MYB29 identified an emergent property of the system since the absence of aliphatic glucosinolates in these plants could not be predicted by the chemotype of the single knockouts. CONCLUSIONS/SIGNIFICANCE: It seems that these cruciferous-specific MYB regulatory genes have evolved both overlapping and specific regulatory capacities. This provides a unique system within which to study the evolution of MYB regulatory factors and their downstream targets

    Identification of QTLs controlling gene expression networks defined a priori

    Get PDF
    BACKGROUND: Gene expression microarrays allow the quantification of transcript accumulation for many or all genes in a genome. This technology has been utilized for a range of investigations, from assessments of gene regulation in response to genetic or environmental fluctuation to global expression QTL (eQTL) analyses of natural variation. Current analysis techniques facilitate the statistical querying of individual genes to evaluate the significance of a change in response, also known as differential expression. Since genes are also known to respond as groups due to their membership in networks, effective approaches are needed to investigate transcriptome variation as related to gene network responses. RESULTS: We describe a statistical approach that is capable of assessing higher-order a priori defined gene network response, as measured by microarrays. This analysis detected significant network variation between two Arabidopsis thaliana accessions, Bay-0 and Shahdara. By extending this approach, we were able to identify eQTLs controlling network responses for 18 out of 20 a priori-defined gene networks in a recombinant inbred line population derived from accessions Bay-0 and Shahdara. CONCLUSION: This approach has the potential to be expanded to facilitate direct tests of the relationship between phenotypic trait and transcript genetic architecture. The use of a priori definitions for network eQTL identification has enormous potential for providing direction toward future eQTL analyses

    Mapping of QTL for Resistance against the Crucifer Specialist Herbivore Pieris brassicae in a New Arabidopsis Inbred Line Population, Da(1)-12×Ei-2

    Get PDF
    In Arabidopsis thaliana and other crucifers, the glucosinolate-myrosinase system contributes to resistance against herbivory by generalist insects. As yet, it is unclear how crucifers defend themselves against crucifer-specialist insect herbivores.We analyzed natural variation for resistance against two crucifer specialist lepidopteran herbivores, Pieris brassicae and Plutella xylostella, among Arabidopsis thaliana accessions and in a new Arabidopsis recombinant inbred line (RIL) population generated from the parental accessions Da(1)-12 and Ei-2. This RIL population consists of 201 individual F(8) lines genotyped with 84 PCR-based markers. We identified six QTL for resistance against Pieris herbivory, but found only one weak QTL for Plutella resistance. To elucidate potential factors causing these resistance QTL, we investigated leaf hair (trichome) density, glucosinolates and myrosinase activity, traits known to influence herbivory by generalist insects. We identified several previously unknown QTL for these traits, some of which display a complex pattern of epistatic interactions.Although some trichome, glucosinolate or myrosinase QTL co-localize with Pieris QTL, none of these traits explained the resistance QTL convincingly, indicating that resistance against specialist insect herbivores is influenced by other traits than resistance against generalists

    Discovery of New Molecular Subtypes in Oesophageal Adenocarcinoma

    Get PDF
    A large number of patients suffering from oesophageal adenocarcinomas do not respond to conventional chemotherapy; therefore, it is necessary to identify new predictive biomarkers and patient signatures to improve patient outcomes and therapy selections. We analysed 87 formalin-fixed and paraffin-embedded (FFPE) oesophageal adenocarcinoma tissue samples with a reverse phase protein array (RPPA) to examine the expression of 17 cancer-related signalling molecules. Protein expression levels were analysed by unsupervised hierarchical clustering and correlated with clinicopathological parameters and overall patient survival. Proteomic analyses revealed a new, very promising molecular subtype of oesophageal adenocarcinoma patients characterised by low levels of the HSP27 family proteins and high expression of those of the HER family with positive lymph nodes, distant metastases and short overall survival. After confirmation in other independent studies, our results could be the foundation for the development of a Her2-targeted treatment option for this new patient subgroup of oesophageal adenocarcinoma

    Mitochondrial phylogeography of baboons (Papio spp.) – Indication for introgressive hybridization?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Baboons of the genus <it>Papio </it>are distributed over wide ranges of Africa and even colonized parts of the Arabian Peninsula. Traditionally, five phenotypically distinct species are recognized, but recent molecular studies were not able to resolve their phylogenetic relationships. Moreover, these studies revealed para- and polyphyletic (hereafter paraphyletic) mitochondrial clades for baboons from eastern Africa, and it was hypothesized that introgressive hybridization might have contributed substantially to their evolutionary history. To further elucidate the phylogenetic relationships among baboons, we extended earlier studies by analysing the complete mitochondrial cytochrome <it>b </it>gene and the 'Brown region' from 67 specimens collected at 53 sites, which represent all species and which cover most of the baboons' range.</p> <p>Results</p> <p>Based on phylogenetic tree reconstructions seven well supported major haplogroups were detected, which reflect geographic populations and discordance between mitochondrial phylogeny and baboon morphology. Our divergence age estimates indicate an initial separation into southern and northern baboon clades 2.09 (1.54–2.71) million years ago (mya). We found deep divergences between haplogroups within several species (~2 mya, northern and southern yellow baboons, western and eastern olive baboons and northern and southern chacma baboons), but also recent divergence ages among species (< 0.7 mya, yellow, olive and hamadryas baboons in eastern Africa).</p> <p>Conclusion</p> <p>Our study confirms earlier findings for eastern Africa, but shows that baboon species from other parts of the continent are also mitochondrially paraphyletic. The phylogenetic patterns suggest a complex evolutionary history with multiple phases of isolation and reconnection of populations. Most likely all these biogeographic events were triggered by multiple cycles of expansion and retreat of savannah biomes during Pleistocene glacial and inter-glacial periods. During contact phases of populations reticulate events (i.e. introgressive hybridization) were highly likely, similar to ongoing hybridization, which is observed between East African baboon populations. Defining the extent of the introgressive hybridization will require further molecular studies that incorporate additional sampling sites and nuclear loci.</p

    Fire History from Life-History: Determining the Fire Regime that a Plant Community Is Adapted Using Life-Histories

    Get PDF
    Wildfire is a fundamental disturbance process in many ecological communities, and is critical in maintaining the structure of some plant communities. In the past century, changes in global land use practices have led to changes in fire regimes that have radically altered the composition of many plant communities. As the severe biodiversity impacts of inappropriate fire management regimes are recognized, attempts are being made to manage fires within a more ‘natural’ regime. In this aim, the focus has typically been on determining the fire regime to which the community has adapted. Here we take a subtly different approach and focus on the probability of a patch being burnt. We hypothesize that competing sympatric taxa from different plant functional groups are able to coexist due to the stochasticity of the fire regime, which creates opportunities in both time and space that are exploited differentially by each group. We exploit this situation to find the fire probability at which three sympatric grasses, from different functional groups, are able to co-exist. We do this by parameterizing a spatio-temporal simulation model with the life-history strategies of the three species and then search for the fire frequency and scale at which they are able to coexist when in competition. The simulation gives a clear result that these species only coexist across a very narrow range of fire probabilities centred at 0.2. Conversely, fire scale was found only to be important at very large scales. Our work demonstrates the efficacy of using competing sympatric species with different regeneration niches to determine the probability of fire in any given patch. Estimating this probability allows us to construct an expected historical distribution of fire return intervals for the community; a critical resource for managing fire-driven biodiversity in the face of a growing carbon economy and ongoing climate change

    Genomic Tools for Evolution and Conservation in the Chimpanzee: Pan troglodytes ellioti Is a Genetically Distinct Population

    Get PDF
    In spite of its evolutionary significance and conservation importance, the population structure of the common chimpanzee, Pan troglodytes, is still poorly understood. An issue of particular controversy is whether the proposed fourth subspecies of chimpanzee, Pan troglodytes ellioti, from parts of Nigeria and Cameroon, is genetically distinct. Although modern high-throughput SNP genotyping has had a major impact on our understanding of human population structure and demographic history, its application to ecological, demographic, or conservation questions in non-human species has been extremely limited. Here we apply these tools to chimpanzee population structure, using ∼700 autosomal SNPs derived from chimpanzee genomic data and a further ∼100 SNPs from targeted re-sequencing. We demonstrate conclusively the existence of P. t. ellioti as a genetically distinct subgroup. We show that there is clear differentiation between the verus, troglodytes, and ellioti populations at the SNP and haplotype level, on a scale that is greater than that separating continental human populations. Further, we show that only a small set of SNPs (10–20) is needed to successfully assign individuals to these populations. Tellingly, use of only mitochondrial DNA variation to classify individuals is erroneous in 4 of 54 cases, reinforcing the dangers of basing demographic inference on a single locus and implying that the demographic history of the species is more complicated than that suggested analyses based solely on mtDNA. In this study we demonstrate the feasibility of developing economical and robust tests of individual chimpanzee origin as well as in-depth studies of population structure. These findings have important implications for conservation strategies and our understanding of the evolution of chimpanzees. They also act as a proof-of-principle for the use of cheap high-throughput genomic methods for ecological questions
    corecore