4,508 research outputs found

    Rapid heat discharge during deep-sea eruptions generates megaplumes and disperses tephra

    Get PDF
    Deep-marine volcanism drives Earth’s most energetic transfers of heat and mass between the crust and the oceans. While magmatic activity on the seafloor has been correlated with the occurrence of colossal enigmatic plumes of hydrothermal fluid known as megaplumes, little is known of the primary source and intensity of the energy release associated with seafloor volcanism. As a result, the specific origin of megaplumes remains ambiguous. By developing a mathematical model for the dispersal of submarine tephras, we show that the transport of pyroclasts requires an energy discharge that is sufficiently powerful (~1-2 TW) to form a hydrothermal plume with characteristics matching those of observed megaplumes in a matter of hours. Our results thereby directly link megaplume creation, active magma extrusion, and tephra dispersal. The energy flux at the plume source required to drive the dispersal is difficult to attain by purely volcanogenic means, and likely requires an additional input of heat, potentially from rapid evacuations of hot hydrothermal fluids triggered by dyke intrusion. In view of the ubiquity of submarine tephra deposits, our results demonstrate that intervals of rapid hydrothermal discharge are likely commonplace during deep-ocean volcanism

    The development and validation of a human screening model of tobacco abstinence

    Get PDF
    INTRODUCTION: Given the low efficacy of smoking cessation methods, an experimental medicine model indicating smoking abstinence would be of great benefit to the development of new treatments. Hence the sensitivity of cognitive tasks and ambulatory craving measures to smoking abstinence were investigated. METHODS: Cognitive tasks and ambulatory ratings of craving were assessed for sensitivity to acute abstinence (experiment 1), and nicotine replacement therapy administration (NRT) (experiment 2). RESULTS: In experiment 1 go/no-go performance was improved (Mean Difference [MD] -0.99, 95% CI: -1.90 to -0.08) and craving was lower (Regression Coefficient [RC] -33.39, 95% CI: -39.96 to -26.82) in satiated compared with abstinent smokers. There was no clear evidence that N-back (MD 0.64, 95% CI: -0.42 to 2.51), delay discounting (MD 0.01, 95% CI: 0.001 to 0.005) or dot probe performance (MD 0.61, 95% CI: -0.87 to 1.54) were sensitive to acute abstinence. In experiment 2 go/no-go performance was improved (MD 1.12, 95% CI: 0.16-2.08) and craving was lower (RC -18.59, 95% CI: -24.63 to -12.55) smokers abstinent overnight receiving NRT compared with placebo. There was no clear evidence that N-back (MD -0.25, 95% CI: -1.45 to 0.94), delay discounting (MD 0.01, 95% CI: -0.002 to 0.004) or dot probe performance (MD -0.49, 95% CI: -1.61 to -0.64) were sensitive to NRT. CONCLUSIONS: Findings from two experiments converge to suggest that abstinence in smokers reliably increases ambulatory craving assessments and, to a lesser extent, decreases go/no-go task performance. These findings can be utilized in the development of an experimental medicine model to test novel treatments for smoking cessation

    Disease prevention versus data privacy : using landcover maps to inform spatial epidemic models

    Get PDF
    The availability of epidemiological data in the early stages of an outbreak of an infectious disease is vital for modelers to make accurate predictions regarding the likely spread of disease and preferred intervention strategies. However, in some countries, the necessary demographic data are only available at an aggregate scale. We investigated the ability of models of livestock infectious diseases to predict epidemic spread and obtain optimal control policies in the event of imperfect, aggregated data. Taking a geographic information approach, we used land cover data to predict UK farm locations and investigated the influence of using these synthetic location data sets upon epidemiological predictions in the event of an outbreak of foot-and-mouth disease. When broadly classified land cover data were used to create synthetic farm locations, model predictions deviated significantly from those simulated on true data. However, when more resolved subclass land use data were used, moderate to highly accurate predictions of epidemic size, duration and optimal vaccination and ring culling strategies were obtained. This suggests that a geographic information approach may be useful where individual farm-level data are not available, to allow predictive analyses to be carried out regarding the likely spread of disease. This method can also be used for contingency planning in collaboration with policy makers to determine preferred control strategies in the event of a future outbreak of infectious disease in livestock

    Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawai'i, recorded by melt embayments

    Get PDF
    The decompression rate of magma as it ascends during volcanic eruptions is an important but poorly constrained parameter that controls many of the processes that influence eruptive behaviour. In this study we quantify decompression rates for basaltic magmas using volatile diffusion in olivine-hosted melt tubes (embayments) for three contrasting eruptions of KÄ«lauea volcano, Hawai'i. Incomplete exsolution of Hâ‚‚O, COâ‚‚ and S from the embayment melts during eruptive ascent creates diffusion profiles that can be measured using microanalytical techniques, and then modelled to infer the average decompression rate. We obtain average rates of ~0.05-0.45 MPa s-1 for eruptions ranging from Hawaiian style fountains to basaltic subplinian, with the more intense eruptions having higher rates. The ascent timescales for these magmas vary from around ~5 to ~36 minutes from depths of ~2 to ~4 km respectively. Decompression-exsolution models based on the embayment data also allow for an estimate of the mass fraction of pre-existing exsolved volatiles within the magma body. In the eruptions studied this varies from 0.1-3.2 wt%, but does not appear to be the key control on eruptive intensity. Our results do not support a direct link between the concentration of pre-eruptive volatiles and eruptive intensity; rather they suggest that for these eruptions decompression rates are proportional to independent estimates of mass discharge rate. Although the intensity of eruptions is defined by the discharge rate, based on the currently available dataset of embayment analyses it does not appear to scale linearly with average decompression rate. This study demonstrates the utility of the embayment method for providing quantitative constraints on magma ascent during explosive basaltic eruptions

    A 65 k.y. time series from sediment-hosted glasses reveals rapid transitions in ocean ridge magmas

    Get PDF
    Studies of ocean ridge magmatism have been hampered by the difficulty in constructing time-series data over more than a few thousand years. Sediment rapidly covers newly formed ocean crust, and older rocks, even when recovered from fault scarps, cannot be dated accurately. Ridge eruptions, however, disperse pyroclastic glass over distances as far as 5 km, and these glasses have been shown to persist for thousands of years in on-ridge sediment push cores. Here we present data on such glasses from a piston core that impacted basement in much older (600 ka) sediment. The age of deposition was determined using established stratigraphic methods to date the host sediment, yielding an average sample resolution of a few thousand years and a continuous 65 k.y. time series. The new time-series data show systematic temporal variations in magma compositions related to a change to the dynamics of crustal storage, which led to greater extents of pre-eruptive differentiation. Shortly thereafter was a small but discernable shift toward more enriched primary melt compositions. These events coincide with the onset of enhanced crustal production, previously identified using seismic data and interpreted to reflect the capture of a hotspot by the ridge. These results show the long-term preservation of pyroclastic glasses and suggest that the construction of high-resolution volcanic stratigraphy over a million years or more may be possible at ocean ridges, using multiple piston cores that impact basement. Sediment-hosted glasses have the potential to transform ocean ridges from the volcanic setting with the worst time-series data to that with the best

    Constrained evolution drives limited influenza diversity

    Get PDF
    H3N2 influenza A viruses have been widely circulating in human populations since the pandemic of 1968. A striking feature of the evolutionary development of this strain has been its 'canalized' nature, with narrow evolutionary trees dominated by long trunks with few branching, or bifurcation events and a consequent lack of standing diversity at any single point. This is puzzling, as one might expect that the strong human immune response against the virus would create an environment encouraging more diversity, not less. Previous models have used various assumptions in order to account for this finding. A new analysis published in BMC Biology suggests that this processive evolution down a single path can be recapitulated by a relatively simple model incorporating only two primary parameters - the mutation rate of the virus, and the immunological distance created by each mutation - so long as these parameters are within a particular narrow but biologically plausible range

    Characterising hyperinsulinaemia induced insulin resistance in human skeletal muscle cells

    Get PDF
    Hyperinsulinaemia potentially contributes to insulin resistance in metabolic tissues, such as skeletal muscle. The purpose of these experiments was to characterise glucose uptake, insulin signalling and relevant gene expression in primary human skeletal muscle-derived cells (HMDCs), in response to prolonged insulin exposure (PIE) as a model of hyperinsulinaemia-induced insulin resistance. Differentiated HMDCs from healthy human donors were cultured with or without insulin (100 nM) for 3 days followed by an acute insulin stimulation. HMDCs exposed to PIE were characterised by impaired insulin-stimulated glucose uptake, blunted IRS-1 phosphorylation (Tyr612) and Akt (Ser473) phosphorylation in response to an acute insulin stimulation. Glucose transporter 1 (GLUT1), but not GLUT4, mRNA and protein increased following PIE. The mRNA expression of metabolic (PDK4) and inflammatory markers (TNF-α) was reduced by PIE but did not change lipid (SREBP1 and CD36) or mitochondrial (UCP3) markers. These experiments provide further characterisation of the effects of PIE as a model of hyperinsulinaemia-induced insulin resistance in HMDCs

    Evaluating the potential for the environmentally sustainable control of foot and mouth disease in Sub-Saharan Africa

    Get PDF
    Strategies to control transboundary diseases have in the past generated unintended negative consequences for both the environment and local human populations. Integrating perspectives from across disciplines, including livestock, veterinary and conservation sectors, is necessary for identifying disease control strategies that optimise environmental goods and services at the wildlife-livestock interface. Prompted by the recent development of a global strategy for the control and elimination of foot-and-mouth disease (FMD), this paper seeks insight into the consequences of, and rational options for potential FMD control measures in relation to environmental, conservation and human poverty considerations in Africa. We suggest a more environmentally nuanced process of FMD control that safe-guards the integrity of wild populations and the ecosystem dynamics on which human livelihoods depend while simultaneously improving socio-economic conditions of rural people. In particular, we outline five major issues that need to be considered: 1) improved understanding of the different FMD viral strains and how they circulate between domestic and wildlife populations; 2) an appreciation for the economic value of wildlife for many African countries whose presence might preclude the country from ever achieving an FMD-free status; 3) exploring ways in which livestock production can be improved without compromising wildlife such as implementing commodity-based trading schemes; 4) introducing a participatory approach involving local farmers and the national veterinary services in the control of FMD; and 5) finally the possibility that transfrontier conservation might offer new hope of integrating decision-making at the wildlife-livestock interface

    Biogenesis of the inner membrane complex is dependent on vesicular transport by the alveolate specific GTPase Rab11B

    Get PDF
    Apicomplexan parasites belong to a recently recognised group of protozoa referred to as Alveolata. These protists contain membranous sacs (alveoli) beneath the plasma membrane, termed the Inner Membrane Complex (IMC) in the case of Apicomplexa. During parasite replication the IMC is formed de novo within the mother cell in a process described as internal budding. We hypothesized that an alveolate specific factor is involved in the specific transport of vesicles from the Golgi to the IMC and identified the small GTPase Rab11B as an alveolate specific Rab-GTPase that localises to the growing end of the IMC during replication of Toxoplasma gondii. Conditional interference with Rab11B function leads to a profound defect in IMC biogenesis, indicating that Rab11B is required for the transport of Golgi derived vesicles to the nascent IMC of the daughter cell. Curiously, a block in IMC biogenesis did not affect formation of sub-pellicular microtubules, indicating that IMC biogenesis and formation of sub-pellicular microtubules is not mechanistically linked. We propose a model where Rab11B specifically transports vesicles derived from the Golgi to the immature IMC of the growing daughter parasites
    • …
    corecore