228 research outputs found

    Dynapenic obesity and the risk of incident Type 2 diabetes: the English Longitudinal Study of Ageing

    Get PDF
    Aim Obesity is a well‐established risk factor for developing Type 2 diabetes. Evidence suggests that sarcopenia, the age‐related decline in muscle mass and strength, may exacerbate diabetes risk in obese individuals. The aim of this study was to determine the combined effect of obesity and low muscle strength, dynapenia, on the risk of incident Type 2 diabetes in older adults. Methods Participants were 5953 (1670 obese) men and women from the English Longitudinal Study of Ageing without known Type 2 diabetes at baseline and for whom handgrip strength, biochemical and other clinical data were collected. A diagnosis of Type 2 diabetes was recorded from self‐reported physician diagnosis over 6 years. Results For each unit increase in grip strength, there was a reduction in diabetes risk (age‐, sex‐ and BMI adjusted HR; 0.98; 95% CI 0.96–0.99). The risk of Type 2 diabetes was elevated in all obese participants, but was greatest in those with low handgrip strength (HR = 4.93, 95% CI 2.85, 8.53) compared with non‐obese individuals with high handgrip strength. Eleven per cent of the sample met the threshold for weakness (handgrip strength: men < 26 kg; women < 16 kg) that was associated with elevated Type 2 diabetes risk in obese (HR = 3.57, 95% CI 2.04, 6.24) but not in non‐obese (HR = 0.86, 95% CI, 0.44, 1.68) compared with normal/non‐obese participants. Conclusion Dynapenic obesity, determined by high BMI and low handgrip strength, is associated with increased risk of incident Type 2 diabetes in older people

    EffectS of non-nutritive sWeetened beverages on appetITe during aCtive weigHt loss (SWITCH): Protocol for a randomized, controlled trial assessing the effects of non-nutritive sweetened beverages compared to water during a 12-week weight loss period and a follow up weight maintenance period

    Get PDF
    Background Acute and medium-term intervention studies suggest that non-nutritive sweeteners (NNS) are beneficial for weight loss, however there is limited human data on the long-term effects of consuming NNS on weight loss, maintenance, and appetite. Further research is therefore required to elucidate the prolonged impact of NNS consumption on these outcome measures. Methods/design A randomized parallel groups design will be used to assess whether regular NNS beverage intake is equivalent to a water control in promoting weight loss over 12-weeks (weekly weight loss sessions; Phase I), then supporting weight maintenance over 40-weeks (monthly sessions; Phase II) and subsequently independent weight maintenance over 52-weeks (Phase III) in 432 participants. A subset of these participants (n = 116) will complete laboratory-based appetite probe days (15 sessions; 3 sessions each at baseline, at the start of phase I and the end of each phase). A separate subset (n = 50) will complete body composition scans (DXA) at baseline and at the end of each phase. All participants will regularly be weighed and will complete questionnaires and cognitive tasks to assess changes in body weight and appetitive behaviours. Measures of physical activity and biochemical markers will also be taken. Discussion The trial will assess the efficacy of NNS beverages compared to water during a behavioural weight loss and maintenance programme. We aim to understand whether the impact of NNS on weight, dietary adherence and well-being are beneficial or transient and effects on prolonged successful weight loss and weight maintenance through sustained changes in appetite and eating behaviour. Trial registration: Clinical Trials: NCT02591134; registered: 23.10.201

    Obesity-induced insulin resistance in human skeletal muscle is characterised by defective activation of p42/p44 MAP kinase

    Get PDF
    Insulin resistance (IR), an impaired cellular, tissue and whole body response to insulin, is a major pathophysiological defect of type 2 diabetes mellitus. Although IR is closely associated with obesity, the identity of the molecular defect(s) underlying obesity-induced IR in skeletal muscle remains controversial; reduced post-receptor signalling of the insulin receptor substrate 1 (IRS1) adaptor protein and downstream effectors such as protein kinase B (PKB) have previously been implicated. We examined expression and/or activation of a number of components of the insulin-signalling cascade in skeletal muscle of 22 healthy young men (with body mass index (BMI) range, 20–37 kg/m2). Whole body insulin sensitivity (M value) and body composition was determined by the hyperinsulinaemic (40 mU. min−1.m−2.), euglycaemic clamp and by dual energy X-ray absorptiometry (DEXA) respectively. Skeletal muscle (vastus lateralis) biopsies were taken before and after one hour of hyperinsulinaemia and the muscle insulin signalling proteins examined by western blot and immunoprecipitation assay. There was a strong inverse relationship between M-value and BMI. The most striking abnormality was significantly reduced insulin-induced activation of p42/44 MAP kinase, measured by specific assay, in the volunteers with poor insulin sensitivity. However, there was no relationship between individuals' BMI or M-value and protein expression/phosphorylation of IRS1, PKB, or p42/44 MAP kinase protein, under basal or hyperinsulinaemic conditions. In the few individuals with poor insulin sensitivity but preserved p42/44 MAP kinase activation, other signalling defects were evident. These findings implicate defective p42/44 MAP kinase signalling as a potential contributor to obesity-related IR in a non-diabetic population, although clearly multiple signalling defects underlie obesity associated IR

    Reduced physical activity in young and older adults: metabolic and musculoskeletal implications

    Get PDF
    Background: Although the health benefits of regular physical activity and exercise are well established and have been incorporated into national public health recommendations, there is a relative lack of understanding pertaining to the harmful effects of physical inactivity. Experimental paradigms including complete immobilization and bed rest are not physiologically representative of sedentary living. A useful ‘real-world’ approach to contextualize the physiology of societal downward shifts in physical activity patterns is that of short-term daily step reduction. Results: Step-reduction studies have largely focused on musculoskeletal and metabolic health parameters, providing relevant disease models for metabolic syndrome, type 2 diabetes (T2D), nonalcoholic fatty liver disease (NAFLD), sarcopenia and osteopenia/osteoporosis. In untrained individuals, even a short-term reduction in physical activity has a significant impact on skeletal muscle protein and carbohydrate metabolism, causing anabolic resistance and peripheral insulin resistance, respectively. From a metabolic perspective, short-term inactivity-induced peripheral insulin resistance in skeletal muscle and adipose tissue, with consequent liver triglyceride accumulation, leads to hepatic insulin resistance and a characteristic dyslipidaemia. Concomitantly, various inactivity-related factors contribute to a decline in function; a reduction in cardiorespiratory fitness, muscle mass and muscle strength. Conclusions: Physical inactivity maybe particularly deleterious in certain patient populations, such as those at high risk of T2D or in the elderly, considering concomitant sarcopenia or osteoporosis. The effects of short-term physical inactivity (with step reduction) are reversible on resumption of habitual physical activity in younger people, but less so in older adults. Nutritional interventions and resistance training offer potential strategies to prevent these deleterious metabolic and musculoskeletal effects. Impact: Individuals at high risk of/with cardiometabolic disease and older adults may be more prone to these acute periods of inactivity due to acute illness or hospitalization. Understanding the risks is paramount to implementing countermeasures

    Compensatory changes in energy balance during dapagliflozin treatment in type 2 diabetes mellitus: a randomised double-blind, placebo-controlled, cross-over trial (ENERGIZE)-study protocol.

    Get PDF
    INTRODUCTION: Sodium glucose cotransporter 2 (SGLT2) inhibitors are effective blood-glucose-lowering medications with beneficial effects on body weight in patients with type 2 diabetes mellitus (T2DM). However, observed weight loss is less than that predicted from quantified glycosuria, suggesting a compensatory increase in energy intake or a decrease in energy expenditure. Studies using dual-energy X-ray absorptiometry (DEXA) have suggested most body weight change is due to loss of adipose tissue, but organ-specific changes in fat content (eg, liver, skeletal muscle) have not been determined. In this randomised, double-blind, placebo-controlled crossover study, we aim to study the compensatory changes in energy intake, eating behaviour and energy expenditure accompanying use of the SGLT2 inhibitor, dapagliflozin. Additionally, we aim to quantify changes in fat distribution using MRI, in liver fat using proton magnetic resonance spectroscopy ((1)H-MRS) and in central nervous system (CNS) responses to food images using blood oxygen level dependent (BOLD) functional MRI (fMRI). METHODS AND ANALYSIS: This outpatient study will evaluate the effect of dapagliflozin (10 mg), compared with placebo, on food intake and energy expenditure at 7 days and 12 weeks. 52 patients with T2DM will be randomised to dapagliflozin or placebo for short-term and long-term trial interventions in a within participants, crossover design. The primary outcome is the difference in energy intake during a test meal between dapagliflozin and placebo. Intake data are collected automatically using a customised programme operating a universal eating monitor (UEM). Secondary outcomes include (1) measures of appetite regulation including rate of eating, satiety quotient, appetite ratings (between and within meals), changes in CNS responses to food images measured using BOLD-fMRI, (2) measures of energy expenditure and (3) changes in body composition including changes in liver fat and abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). ETHICAL APPROVAL: This study has been approved by the North West Liverpool Central Research Ethics Committee (14/NW/0340) and is conducted in accordance with the Declaration of Helsinki and the Good Clinical Practice (GCP). TRIAL REGISTRATION NUMBER: ISRCTN14818531. EUDRACT number 2013-004264-60

    Metabolically healthy and unhealthy obesity: differential effects on myocardial function according to metabolic syndrome, rather than obesity.

    Get PDF
    BACKGROUND: The term 'metabolically healthy obese (MHO)' is distinguished using body mass index (BMI), yet BMI is a poor index of adiposity. Some epidemiological data suggest that MHO carries a lower risk of cardiovascular disease (CVD) or mortality than being normal weight yet metabolically unhealthy. OBJECTIVES: We aimed to undertake a detailed phenotyping of individuals with MHO by using imaging techniques to examine ectopic fat (visceral and liver fat deposition) and myocardial function. We hypothesised that metabolically unhealthy individuals (irrespective of BMI) would have adverse levels of ectopic fat and myocardial dysfunction compared with MHO individuals. SUBJECTS: Individuals were categorised as non-obese or obese (BMI â©Ÿ30 kg m(-2)) and as metabolically healthy or unhealthy according to the presence or absence of metabolic syndrome. METHODS: Sixty-seven individuals (mean±s.d.: age 49±11 years) underwent measurement of (i) visceral, subcutaneous and liver fat using magnetic resonance imaging and proton magnetic resonance spectroscopy, (ii) components of metabolic syndrome, (iii) cardiorespiratory fitness and (iv) indices of systolic and diastolic function using tissue Doppler echocardiography. RESULTS: Cardiorespiratory fitness was similar between all groups; abdominal and visceral fat was highest in the obese groups. Compared with age- and BMI-matched metabolically healthy counterparts, the unhealthy (lean or obese) individuals had higher liver fat and decreased early diastolic strain rate, early diastolic tissue velocity and systolic strain indicative of subclinical systolic and diastolic dysfunction. The magnitude of dysfunction correlated with the number of components of metabolic syndrome but not with BMI or with the degree of ectopic (visceral or liver) fat deposition. CONCLUSIONS: Myocardial dysfunction appears to be related to poor metabolic health rather than simply BMI or fat mass. These data may partly explain the epidemiological evidence on CVD risk relating to the different obesity phenotypes

    Physical Activity and Sedentary Time: Association with Metabolic Health and Liver Fat.

    Get PDF
    INTRODUCTION/PURPOSE: To investigate whether a) lower levels of daily physical activity (PA) and greater sedentary time accounted for contrasting metabolic phenotypes (higher liver fat/presence of metabolic syndrome [MetS+] vs lower liver fat/absence of metabolic syndrome [MetS-]) in individuals of similar BMI and b) the association of sedentary time on metabolic health and liver fat. METHODS: Ninety-eight habitually active participants (53 female, 45 male; age 39±13 years; BMI 26.9±5.1 kg/m), underwent assessments of PA (SenseWear armband; wear time ~98%), cardio-respiratory fitness (V[Combining Dot Above]O2 peak), body composition (MRI and MRS) and multi-organ insulin sensitivity (OGTT). We undertook a) cross-sectional analysis comparing four groups: non-obese or obese, with and without metabolic syndrome (MetS+ vs MetS-) and b) univariate and multivariate regression for sedentary time and other levels of PA in relation to liver fat. RESULTS: Light, moderate and vigorous PA did not account for differences in metabolic health between individuals, whether non-obese or obese, although MetS+ individuals were more sedentary, with a higher number, and prolonged bouts (~1-2 hours). Overall, sedentary time, average daily METS and V[Combining Dot Above]O2 peak were each independently associated with liver fat percentage. Each additional hour of daily sedentary time was associated with a 1.15% (95% CI, 1.14-1.50%) higher liver fat content. CONCLUSIONS: Greater sedentary time, independent of other levels of PA, is associated with being metabolically unhealthy; even in habitually active people, lesser sedentary time, and higher cardio-respiratory fitness and average daily METS is associated with lower liver fat.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Randomised, cOntrolled Multicentre trial of 26 weeks subcutaneous liraglutide (a glucagon-like peptide-1 receptor Agonist), with or without contiNuous positive airway pressure (CPAP), in patients with type 2 diabetes mellitus (T2DM) and obstructive sleep apnoEa (OSA) (ROMANCE): study protocol assessing the effects of weight loss on the apnea-hypnoea index (AHI).

    Get PDF
    INTRODUCTION: Obstructive sleep apnoea (OSA) and type 2 diabetes mellitus (T2DM) often occur concurrently, and untreated OSA may potentially amplify the high risk of cardiovascular disease in T2DM. Compliance with continuous positive airway pressure (CPAP), the conventional treatment for OSA, can be poor and considering weight loss is the most effective treatment for OSA. This trial examines whether the glucagon-like peptide-1 receptor agonist liraglutide, a glucose-lowering therapy associated with significant weight loss used in T2DM, can improve the severity and symptoms of OSA. METHODS AND ANALYSIS: This is an outpatient, single-centred, open-labelled, prospective, phase IV randomised controlled trial in a two-by-two factorial design. One hundred and thirty-two patients with newly diagnosed OSA (apnoea-hypopnoea index (AHI) ≄15 events/hour), and existing obesity and T2DM (glycated haemoglobin (HbA1c) ≄47 mmol/mol), will be recruited from diabetes and sleep medicine outpatient clinics in primary and secondary care settings across Liverpool. Patients will be allocated equally, using computer-generated random, permuted blocks of unequal sizes, to each of the four treatment arms for 26 weeks: (i) liraglutide (1.8 mg once per day) alone, (ii) liraglutide 1.8 mg once per day with CPAP, (iii) CPAP alone (conventional care) or (iv) no treatment (control). The primary outcome measure is change in OSA severity, determined by AHI. Secondary outcome measures include effects on glycaemic control (glycated haemoglobin (HbA1c)), body weight and quality of life measures. Exploratory measures include measures of physical activity, MRI-derived measures of regional body composition including fat mass (abdominal subcutaneous, visceral, neck and liver fat) and skeletal muscle mass (cross-sectional analysis of thigh), indices of cardiac function (using transthoracic echocardiography) and endothelial function. ETHICAL APPROVAL: The study has been approved by the North West Liverpool Central Research Ethics Committee (14/NW/1019) and it is being conducted in accordance with the Declaration of Helsinki and Good Clinical Practice. TRIAL REGISTRATION NUMBERS: ISRCTN16250774. EUDRACT No. 2014-000988-41. UTN U1111-1139-0677

    Seven day remote ischaemic preconditioning improves endothelial function in patients with type 2 diabetes mellitus: a randomised pilot study

    Get PDF
    Remote ischaemic preconditioning (rIPC) may improve cardiac/cerebrovascular outcomes of ischaemic events. Ischaemic damage caused by cardiovascular/cerebrovascular disease are primary causes of mortality in type 2 diabetes mellitus (T2DM). Due to the positive effects from a bout of rIPC within the vasculature, we explored if daily rIPC could improve endothelial and cerebrovascular function. The aim of this pilot study was to obtain estimates for the change in conduit artery and cerebrovascular function following a 7-day rIPC intervention. Methods: Twenty-one patients with T2DM were randomly allocated to either 7-day daily upper-arm rIPC (4x5 min 220 mmHg, interspaced by 5-min reperfusion) or control. We examined peripheral endothelial function using flow mediated dilation (FMD) before and after ischemia-reperfusion injury (IRI, 20 min forearm ischaemic-20 min reperfusion) and cerebrovascular function, assessed by dynamic cerebral autoregulation (dCA) at three time points; pre, post and 8 days post intervention. Results: For exploratory purposes, we performed statistical analysis on our primary comparison (pre-to-post) to provide an estimate of the change in the primary and secondary outcome variables. Using pre-intervention data as a covariate, the change from pre-post in FMD was 1.3% (95%CI: 0.69 to 3.80; P=0.09) and 0.23 %cm s-1 %.mmHg-1mm Hg/% (-0.12, 0.59; P=0.18) in dCA normalised gain with rIPC versus control. Based upon this, a sample size of 20 and 50 for FMD and normalised gain, respectively, in each group would provide 90% power to detect statistically significant (P&lt;0.05) between-group difference in a randomised controlled trial. Conclusion: We provide estimates of sample size for a randomised control trial exploring the impact of daily rIPC for 7 days on peripheral endothelial and cerebrovascular function. The directional changes outline from our pilot study suggest peripheral endothelial function can be enhanced by daily rIPC in patients with T2DM
    • 

    corecore