101 research outputs found
Glomerulocystic kidney in two red piranhas Pygocentrus nattereri.
Glomerulocystic kidney (GCK) is defined by a dilatation of the Bowman's space (greater than 2 times the normal size) of more than 5% of all glomeruli. Although GCK has been occasionally documented in dogs, cats, and humans with renal failure, in fish, reports of spontaneous GCK are rare. For the present study, 2 captive adult red piranhas Pygocentrus nattereri from a closed population were submitted for post-mortem examination. Clinical history included lethargy, inappetence, dyspnea, and altered buoyancy. Macroscopically, the fish displayed coelomic distension and ascites. The kidneys were markedly enlarged and dark yellow. Histologically, Bowman's space was noticeably dilated, occasionally with atrophic glomerular tufts. Degeneration and necrosis of the tubular epithelium, infiltration, and nephrocalcinosis were also present. To the authors' knowledge, this present study is the first report of spontaneously occurring GCK in red piranhas and freshwater fish in general. Despite being rare, GCK is a condition with the potential to impair the health of fish and mammals, and further studies are needed to shed new light on this condition
âClinically unnecessaryâ use of emergency and urgent care : a realist review of patients' decision making
Background
Demand is labelled âclinically unnecessaryâ when patients do not need the levels of clinical care or urgency provided by the service they contact.
Objective
To identify programme theories which seek to explain why patients make use of emergency and urgent care that is subsequently judged as clinically unnecessary.
Design
Realist review.
Methods
Papers from four recent systematic reviews of demand for emergency and urgent care, and an updated search to January 2017. Programme theories developed using ContextâMechanismâOutcome chains identified from 32 qualitative studies and tested by exploring their relationship with existing health behaviour theories and 29 quantitative studies.
Results
Six mechanisms, based on ten interrelated programme theories, explained why patients made clinically unnecessary use of emergency and urgent care: (a) need for risk minimization, for example heightened anxiety due to previous experiences of traumatic events; (b) need for speed, for example caused by need to function normally to attend to responsibilities; (c) need for low treatmentâseeking burden, caused by inability to cope due to complex or stressful lives; (d) compliance, because family or health services had advised such action; (e) consumer satisfaction, because emergency departments were perceived to offer the desired tests and expertise when contrasted with primary care; and (f) frustration, where patients had attempted and failed to obtain a general practitioner appointment in the desired timeframe. Multiple mechanisms could operate for an individual.
Conclusions
Rather than only focusing on individuals' behaviour, interventions could include changes to health service configuration and accessibility, and societal changes to increase coping ability
Technology-assisted stroke rehabilitation in Mexico: a pilot randomized trial comparing traditional therapy to circuit training in a Robot/technology-assisted therapy gym
Background Stroke rehabilitation in low- and middle-income countries, such as Mexico, is often hampered by lack of clinical resources and funding. To provide a cost-effective solution for comprehensive post-stroke rehabilitation that can alleviate the need for one-on-one physical or occupational therapy, in lower and upper extremities, we proposed and implemented a technology-assisted rehabilitation gymnasium in Chihuahua, Mexico. The Gymnasium for Robotic Rehabilitation (Robot Gym) consisted of low- and high-tech systems for upper and lower limb rehabilitation. Our hypothesis is that the Robot Gym can provide a cost- and labor-efficient alternative for post-stroke rehabilitation, while being more or as effective as traditional physical and occupational therapy approaches. Methods A typical group of stroke patients was randomly allocated to an intervention (nâ=â10) or a control group (nâ=â10). The intervention group received rehabilitation using the devices in the Robot Gym, whereas the control group (nâ=â10) received time-matched standard care. All of the study subjects were subjected to 24 two-hour therapy sessions over a period of 6 to 8 weeks. Several clinical assessments tests for upper and lower extremities were used to evaluate motor function pre- and post-intervention. A cost analysis was done to compare the cost effectiveness for both therapies. Results No significant differences were observed when comparing the results of the pre-intervention Mini-mental, Brunnstrom Test, and Geriatric Depression Scale Test, showing that both groups were functionally similar prior to the intervention. Although, both training groups were functionally equivalent, they had a significant age difference. The results of all of the upper extremity tests showed an improvement in function in both groups with no statistically significant differences between the groups. The Fugl-Meyer and the 10 Meters Walk lower extremity tests showed greater improvement in the intervention group compared to the control group. On the Time Up and Go Test, no statistically significant differences were observed pre- and post-intervention when comparing the control and the intervention groups. For the 6 Minute Walk Test, both groups presented a statistically significant difference pre- and post-intervention, showing progress in their performance. The robot gym therapy was more cost-effective than the traditional one-to-one therapy used during this study in that it enabled therapist to train up to 1.5 to 6 times more patients for the approximately same cost in the long term. Conclusions The results of this study showed that the patients that received therapy using the Robot Gym had enhanced functionality in the upper extremity tests similar to patients in the control group. In the lower extremity tests, the intervention patients showed more improvement than those subjected to traditional therapy. These results support that the Robot Gym can be as effective as traditional therapy for stroke patients, presenting a more cost- and labor-efficient option for countries with scarce clinical resources and funding. Trial registration ISRCTN98578807
Toxicity of Sediment-Associated Pesticides to Chironomus dilutus and Hyalella azteca
Two hundred sediment samples were collected and their toxicity evaluated to aquatic species in a previous study in the agriculturally dominated Central Valley of California, United States. Pyrethroid insecticides were the main contributors to the observed toxicity. However, mortality in approximately one third of the toxic samples could not be explained solely by the presence of pyrethroids in the matrices. Hundreds of pesticides are currently used in the Central Valley of California, but only a few dozen are analyzed in standard environmental monitoring. A significant amount of unexplained sediment toxicity may be due to pesticides that are in widespread use that but have not been routinely monitored in the environment, and even if some of them were, the concentrations harmful to aquatic organisms are unknown. In this study, toxicity thresholds for nine sediment-associated pesticides including abamectin, diazinon, dicofol, fenpropathrin, indoxacarb, methyl parathion, oxyfluorfen, propargite, and pyraclostrobin were established for two aquatic species, the midge Chironomus dilutus and the amphipod Hyalella azteca. For midges, the median lethal concentration (LC50) of the pesticides ranged from 0.18 to 964Â ÎŒg/g organic carbon (OC), with abamectin being the most toxic and propargite being the least toxic pesticide. A sublethal growth endpoint using average individual ash-free dry mass was also measured for the midges. The noâobservable effect concentration values for growth ranged from 0.10 to 633Â ÎŒg/g OC for the nine pesticides. For the amphipods, fenpropathrin was the most toxic, with an LC50 of 1â2Â ÎŒg/g OC. Abamectin, diazinon, and methyl parathion were all moderately toxic (LC50s 2.8â26Â ÎŒg/g OC). Dicofol, indoxacarb, oxyfluorfen, propargite, and pyraclostrobin were all relatively nontoxic, with LC50s greater than the highest concentrations tested. The toxicity information collected in the present study will be helpful in decreasing the frequency of unexplained sediment toxicity in agricultural waterways
Renin and angiotensinogen expression and functions in growth and apoptosis of human glioblastoma
The expression and function in growth and apoptosis of the renin-angiotensin system (RAS) was evaluated in human glioblastoma. Renin and angiotensinogen (AGT) mRNAs and proteins were found by in situ hybridisation and immunohistochemistry in glioblastoma cells. Angiotensinogen was present in glioblastoma cystic fluids. Thus, human glioblastoma cells produce renin and AGT and secrete AGT. Human glioblastoma and glioblastoma cells expressed renin, AGT, renin receptor, AT(2) and/or AT(1) mRNAs and proteins determined by RT-PCR and/or Western blotting, respectively. The function of the RAS in glioblastoma was studied using human glioblastoma cells in culture. Angiotensinogen, des(Ang I)AGT, tetradecapaptide renin substrate (AGT1-14), Ang I, Ang II or Ang III, added to glioblastoma cells in culture, did not modulate their proliferation, survival or death. Angiotensin-converting enzyme inhibitors did not diminish glioblastoma cell proliferation. However, the addition of selective synthetic renin inhibitors to glioblastoma cells decreased DNA synthesis and viable tumour cell number, and induced apoptosis. This effect was not counterbalanced by concomitant addition of Ang II. In conclusion, the complete RAS is expressed by human glioblastomas and glioblastoma cells in culture. Inhibition of renin in glioblastoma cells may be a potential approach to control glioblastoma cell proliferation and survival, and glioblastoma progression in combination therapy
Mammal responses to global changes in human activity vary by trophic group and landscape
Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in humanâwildlife interactions along gradients of human influence.Peer reviewe
- âŠ