244 research outputs found
Approximate Bayesian Computation of radiocarbon and paleoenvironmental record shows population resilience on Rapa Nui (Easter Island).
Examining how past human populations responded to environmental and climatic changes is a central focus of the historical sciences. The use of summed probability distributions (SPD) of radiocarbon dates as a proxy for estimating relative population sizes provides a widely applicable method in this research area. Paleodemographic reconstructions and modeling with SPDs, however, are stymied by a lack of accepted methods for model fitting, tools for assessing the demographic impact of environmental or climatic variables, and a means for formal multi-model comparison. These deficiencies severely limit our ability to reliably resolve crucial questions of past human-environment interactions. We propose a solution using Approximate Bayesian Computation (ABC) to fit complex demographic models to observed SPDs. Using a case study from Rapa Nui (Easter Island), a location that has long been the focus of debate regarding the impact of environmental and climatic changes on its human population, we find that past populations were resilient to environmental and climatic challenges. Our findings support a growing body of evidence showing stable and sustainable communities on the island. The ABC framework offers a novel approach for exploring regions and time periods where questions of climate-induced demographic and cultural change remain unresolved
Performance of single-photon-counting PILATUS detector modules
Characterization of PILATUS single-photon-counting X-ray detector modules regarding charge sharing, energy resolution and rate capability is presented. The performance of the detector was tested with surface diffraction experiments at the synchrotron
EROS 2.0 study: evaluation of two interventional radiotherapy (brachytherapy) schedules for endometrial cancer: a comparison of late vaginal toxicity rates
Background To compare the late toxicity rates after two different high dose rate (HDR) adjuvant intravaginal interventional radiotherapy (IRT-brachytherapy) dose schedules in stage I-II endometrial cancer. Methods Stage I-II patients with endometrial cancer treated with surgery (with or without lymphadenectomy) and adjuvant HDR-IRT between 2014 and 2020 were included in this analysis. Patients were treated with two schedules. In the first cohort (C1), 21 Gy were delivered in three weekly fractions (7 Gy) prescribed 0.5 cm from the applicator surface. In the second cohort (C2), 24 Gy were delivered in four weekly fractions (6 Gy). The clinical target volume was the upper third of the vagina for C1 and the upper 3 cm for C2. HDR-IRT technique and point prescription (5 mm depth from the applicator surface) were the same for all patients. Vaginal toxicity was scored according to the CTCAE 5.0 scale in terms of the presence versus absence of any toxicity grade. The correlation among toxicity and clinical covariates (age, lymphadenectomy, fractionation, stage) was tested by Pearson correlation test (univariate) and by logistic regression (multivariable). Results 114 stage I and three stage II patients, median age 62 (range: 32-85) years, were included in this analysis. The mean follow-up was 56.3 months in C1 (40-76) and 20 months in C2 (8-42). Vaginal late toxicity was recorded in 40 and 15 patients in C1 and 2, respectively. Age, lymphadenectomy, and fractionation were significantly correlated with toxicity at univariate analysis (p value = 0.029, 0.006, and 0.002, respectively), while stepwise logistic regression confirmed only age and fractionation as significantly correlated parameters (p value = 0.02 and 0.001, respectively). Three-year local relapse-free, distant metastasis-free and cause-specific survival rates were 96.6%, 94.8%, and 99.1%, respectively. Conclusions This analysis showed lower vaginal late toxicity rate in C2 compared to C1
Irradiation and SPS Beam Tests of the Alice1LHCb Pixel Chip
The Alice1LHCb front-end chip has been designed for the ALICE pixel and the LHCb RICH detectors. It is fabricated in a commercial 0.25 µm CMOS technology, with special design techniques to obtain radiation tolerance. The chip has been irradiated with low energy protons and heavy ions, to determine the cross-section for Single Event Upsets (SEU), and with X-rays to evaluate the sensitivity to total ionising dose. We report the results of those measurements. We also report preliminary results of measurements done with 150 GeV pions at the CERN SPS
- …