22 research outputs found

    Initial Characterization of the FlgE Hook High Molecular Weight Complex of

    Get PDF
    The spirochete periplasmic flagellum has many unique attributes. One unusual characteristic is the flagellar hook. This structure serves as a universal joint coupling rotation of the membrane-bound motor to the flagellar filament. The hook is comprised of about 120 FlgE monomers, and in most bacteria these structures readily dissociate to monomers (∼ 50 kDa) when treated with heat and detergent. However, in spirochetes the FlgE monomers form a large mass of over 250 kDa [referred to as a high molecular weight complex (HMWC)] that is stable to these and other denaturing conditions. In this communication, we examined specific aspects with respect to the formation and structure of this complex. We found that the Lyme disease spirochete Borrelia burgdorferi synthesized the HMWC throughout the in vitro growth cycle, and also in vivo when implanted in dialysis membrane chambers in rats. The HMWC was stable to formic acid, which supports the concept that the stability of the HMWC is dependent on covalent cross-linking of individual FlgE subunits. Mass spectrometry analysis of the HMWC from both wild type periplasmic flagella and polyhooks from a newly constructed ΔfliK mutant indicated that other proteins besides FlgE were not covalently joined to the complex, and that FlgE was the sole component of the complex. In addition, mass spectrometry analysis also indicated that the HMWC was composed of a polymer of the FlgE protein with both the N- and C-terminal regions remaining intact. These initial studies set the stage for a detailed characterization of the HMWC. Covalent cross-linking of FlgE with the accompanying formation of the HMWC we propose strengthens the hook structure for optimal spirochete motility

    Patterns of Early Gut Colonization Shape Future Immune Responses of the Host

    Get PDF
    The most important trigger for immune system development is the exposure to microbial components immediately after birth. Moreover, targeted manipulation of the microbiota can be used to change host susceptibility to immune-mediated diseases. Our aim was to analyze how differences in early gut colonization patterns change the composition of the resident microbiota and future immune system reactivity. Germ-free (GF) mice were either inoculated by single oral gavage of caecal content or let colonized by co-housing with specific pathogen-free (SPF) mice at different time points in the postnatal period. The microbiota composition was analyzed by denaturing gradient gel electrophoresis for 16S rRNA gene followed by principal component analysis. Furthermore, immune functions and cytokine concentrations were analyzed using flow cytometry, ELISA or multiplex bead assay. We found that a single oral inoculation of GF mice at three weeks of age permanently changed the gut microbiota composition, which was not possible to achieve at one week of age. Interestingly, the ex-GF mice inoculated at three weeks of age were also the only mice with an increased pro-inflammatory immune response. In contrast, the composition of the gut microbiota of ex-GF mice that were co-housed with SPF mice at different time points was similar to the gut microbiota in the barrier maintained SPF mice. The existence of a short GF postnatal period permanently changed levels of systemic regulatory T cells, NK and NKT cells, and cytokine production. In conclusion, a time window exists that enables the artificial colonization of GF mice by a single oral dose of caecal content, which may modify the future immune phenotype of the host. Moreover, delayed microbial colonization of the gut causes permanent changes in the immune system

    Modeling Planarian Regeneration: A Primer for Reverse-Engineering the Worm

    Get PDF
    A mechanistic understanding of robust self-assembly and repair capabilities of complex systems would have enormous implications for basic evolutionary developmental biology as well as for transformative applications in regenerative biomedicine and the engineering of highly fault-tolerant cybernetic systems. Molecular biologists are working to identify the pathways underlying the remarkable regenerative abilities of model species that perfectly regenerate limbs, brains, and other complex body parts. However, a profound disconnect remains between the deluge of high-resolution genetic and protein data on pathways required for regeneration, and the desired spatial, algorithmic models that show how self-monitoring and growth control arise from the synthesis of cellular activities. This barrier to progress in the understanding of morphogenetic controls may be breached by powerful techniques from the computational sciences—using non-traditional modeling approaches to reverse-engineer systems such as planaria: flatworms with a complex bodyplan and nervous system that are able to regenerate any body part after traumatic injury. Currently, the involvement of experts from outside of molecular genetics is hampered by the specialist literature of molecular developmental biology: impactful collaborations across such different fields require that review literature be available that presents the key functional capabilities of important biological model systems while abstracting away from the often irrelevant and confusing details of specific genes and proteins. To facilitate modeling efforts by computer scientists, physicists, engineers, and mathematicians, we present a different kind of review of planarian regeneration. Focusing on the main patterning properties of this system, we review what is known about the signal exchanges that occur during regenerative repair in planaria and the cellular mechanisms that are thought to underlie them. By establishing an engineering-like style for reviews of the molecular developmental biology of biomedically important model systems, significant fresh insights and quantitative computational models will be developed by new collaborations between biology and the information sciences

    Alcohol use disorders are associated with venous thromboembolism.

    No full text
    Moderate alcohol consumption has been suggested to protect against venous thromboembolism (VTE). However, it is not known how alcohol abuse and its associated somatic complications affect the risk of VTE. The present study determined the risk of pulmonary embolism (PE) and deep vein thrombosis (DVT) of the lower extremities in patients with alcohol use disorders (AUDs) in Sweden. All inpatients with AUDs in 2002-2010 without a previous VTE event (72,024 patients) were matched to five controls without AUD and followed until the end of follow-up (December 31, 2010), death, emigration or a VTE event. Cox regression was used to determine adjusted hazard ratios (HRs) for VTE. AUD patients were further divided into those without alcohol-related somatic complications (AUD-) and those with alcohol-related somatic complications (AUD+, i.e., encephalopathy, epilepsy, polyneuropathy, myopathy, cardiomyopathy, gastritis, liver disease, acute pancreatitis, and chronic pancreatitis). The adjusted HR for VTE was significantly increased for both AUD- (HR 1.70, 95 % CI 1.55-1.87) and AUD+ (HR 1.73, 95 % CI 1.37-2.19) patients. The risk of DVT was increased in both AUD+ and AUD- patients (HR 1.62, 95 % CI 1.45-1.83 and HR 1.99, 95 % CI 1.53-2.59, respectively). However, the risk of PE was only significantly increased in AUD- patients (HR 1.87, 95 % 1.59-1.20) and not in AUD+ patients (HR 1.16, 95 % 0.70-1.91). In conclusion, the present study shows that AUD increases the risk of VTE, even in the absence of alcohol-related somatic complications. Our findings suggest that severe alcohol abuse increases the risk of VTE

    Gluttonous predators: how to estimate prey size when there are too many prey

    Get PDF
    Prey size is an important factor in food consumption. In studies of feeding ecology, prey items are usually measured individually using calipers or ocular micrometers. Among amphibians and reptiles, there are species that feed on large numbers of small prey items (e.g. ants, termites). This high intake makes it difficult to estimate prey size consumed by these animals. We addressed this problem by developing and evaluating a procedure for subsampling the stomach contents of such predators in order to estimate prey size. Specifically, we developed a protocol based on a bootstrap procedure to obtain a subsample with a precision error of at the most 5%, with a confidence level of at least 95%. This guideline should reduce the sampling effort and facilitate future studies on the feeding habits of amphibians and reptiles, and also provide a means of obtaining precise estimates of prey size

    Ecological Developmental Biology: Interpreting Developmental Signs

    No full text
    Developmental biology is a theory of interpretation. Developmental signals are interpreted differently depending on the previous history of the responding cell. Thus, there is a context for the reception of a signal. While this conclusion is obvious during metamorphosis, when a single hormone instructs some cells to proliferate, some cells to differentiate, and other cells to die, it is commonplace during normal development. Paracrine factors such as BMP4 can induce apoptosis, proliferation, or differentiation depending upon the history of the responding cells. In addition, organisms have evolved to alter their development in response to differences in temperature, diet, the presence of predators, or the presence of competitors. This allows them to develop the phenotype, within the limits imposed by the genotype, best suited for the immediate habitat of the organism. Most developing organisms have also evolved to expect developmental signals from symbionts, and these organisms develop abnormally if the symbiont signals are not present. Thus Hoffmeyer’s “vertical semiotic system” of genetic communication and “horizontal semiotic system” of ecological communication are integrated during development
    corecore