17,027 research outputs found

    Reply to Comment on "Dynamical corrections to the DFT-LDA electron conductance in nanoscale systems"

    Full text link
    We reply to the comment by Jung, Bokes, and Godby (arXiv:0706.0140) on our paper Phys. Rev. Lett. 94, 186810 (2005). We show that the results in their comment should not be taken as an indication that the viscosity corrections to the conductance of real nanoscale structures are small. A more accurate treatment of the density and current density distribution and of the electronic correlations may yield much larger corrections in realistic systems.Comment: Reply to the comment by Jung et al (arXiv:0706.0140). 1 page, no figures, to appear in PR

    Probabilistic abstract interpretation: From trace semantics to DTMC’s and linear regression

    Get PDF
    In order to perform probabilistic program analysis we need to consider probabilistic languages or languages with a probabilistic semantics, as well as a corresponding framework for the analysis which is able to accommodate probabilistic properties and properties of probabilistic computations. To this purpose we investigate the relationship between three different types of probabilistic semantics for a core imperative language, namely Kozen’s Fixpoint Semantics, our Linear Operator Semantics and probabilistic versions of Maximal Trace Semantics. We also discuss the relationship between Probabilistic Abstract Interpretation (PAI) and statistical or linear regression analysis. While classical Abstract Interpretation, based on Galois connection, allows only for worst-case analyses, the use of the Moore-Penrose pseudo inverse in PAI opens the possibility of exploiting statistical and noisy observations in order to analyse and identify various system properties

    Sub-wavelength focusing of high intensities in microfibre tips

    No full text
    Sub-wavelength efficient intensity confinement has been demonstrated in nanostructured optical microfibre tips. Focus Ion Beam (FIB) milling was used to nanostructure gold-coated optical microfibre tips and form apertures at the apex. Simulations were carried out to optimize the device design. Enhanced transmission efficiency (higher than 10-2) was achieved in spot sizes of ~λ/10. Nanostructured microfibre tips have the potential for a number of applications including optical recording, photolithography and scanning near-field optical microscopy (SNOM)

    Escape rates in periodically driven Markov processes

    Full text link
    We present an approximate analytical expression for the escape rate of time-dependent driven stochastic processes with an absorbing boundary such as the driven leaky integrate-and-fire model for neural spiking. The novel approximation is based on a discrete state Markovian modeling of the full long-time dynamics with time-dependent rates. It is valid in a wide parameter regime beyond the restraining limits of weak driving (linear response) and/or weak noise. The scheme is carefully tested and yields excellent agreement with three different numerical methods based on the Langevin equation, the Fokker-Planck equation and an integral equation.Comment: 10 pages, 5 figure

    Hydrothermal–galvanic couple synthesis of directionally oriented BaTiO3 thin films on TiN-coated substrates

    Get PDF
    AbstractBaTiO3 films were synthesized on TiN-coated Si substrate below 100°C by a hydrothermal–galvanic couple technique in barium contained alkaline solutions. X-ray diffraction and electron backscatter diffraction results show that the BaTiO3 thin films were directionally oriented grown on the TiN/Si substrates, i.e., (111) BaTiO3 over (111) TiN. The surface morphologies revealed that BaTiO3 nucleated and grew over the TiN surface with a single layer. From kinetic analyses, the growth rates of BaTiO3 films prepared by the hydrothermal–galvanic couple technique were faster than a hydrothermal method. The galvanic effects were confirmed by investigating the induced currents and energies. The galvanic currents were generated and controlled by both the dissolution of TiN and the formation of BaTiO3. The output electric energies increased rapidly with the reaction time and leveled off at the full coverage of BaTiO3

    Multifragmentation of charge asymmetric nuclear systems

    Full text link
    The multifragmentation of excited spherical nuclear sources with various N/Z ratios and fixed mass number is studied within dynamical and statistical models. The dynamical model treats the multifragmentation process as a final stage of the growth of density fluctuations in unstable expanding nuclear matter. The statistical model makes a choice of the final multifragment configuration according to its statistical weight at a global thermal equilibrium. Similarities and differences in the predictions of the two models on the isotopic composition of the produced fragments are presented and the most sensitive observable characteristics are discussed.Comment: 15 pages, 8 figure

    FK228 Analogues Induce Fetal Hemoglobin in Human Erythroid Progenitors

    Get PDF
    Fetal hemoglobin (HbF) improves the clinical severity of sickle cell disease (SCD), therefore, research to identify HbF-inducing agents for treatment purposes is desirable. The focus of our study is to investigate the ability of FK228 analogues to induce HbF using a novel KU812 dual-luciferase reporter system. Molecular modeling studies showed that the structure of twenty FK228 analogues with isosteric substitutions did not disturb the global structure of the molecule. Using the dual-luciferase system, a subgroup of FK228 analogues was shown to be inducers of HbF at nanomolar concentrations. To determine the physiological relevance of these compounds, studies in primary erythroid progenitors confirmed that JMA26 and JMA33 activated HbF synthesis at levels comparable to FK228 with low cellular toxicity. These data support our lead compounds as potential therapeutic agents for further development in the treatment of SCD
    corecore