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BaTiO3 films were synthesized on TiN-coated Si substrate below 100 °C by a hydrothermal–galvanic couple
technique in barium contained alkaline solutions. X-ray diffraction and electron backscatter diffraction re-
sults show that the BaTiO3 thin films were directionally oriented grown on the TiN/Si substrates, i.e., (111)
BaTiO3 over (111) TiN. The surface morphologies revealed that BaTiO3 nucleated and grew over the TiN sur-
face with a single layer. From kinetic analyses, the growth rates of BaTiO3 films prepared by the hydrothermal–
galvanic couple technique were faster than a hydrothermal method. The galvanic effects were confirmed by in-
vestigating the induced currents and energies. The galvanic currents were generated and controlled by both the
dissolution of TiN and the formation of BaTiO3. The output electric energies increased rapidly with the reaction
time and leveled off at the full coverage of BaTiO3.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.
1. Introduction

Barium titanate (BaTiO3) is one of the most important electro-
ceramicmaterials due to its superior dielectric and ferroelectric proper-
ties [1,2]. BaTiO3 films have been widely used in cutting-edge applica-
tions, such as dynamic random access memory, chemical sensors, and
multilayer chip capacitors [3–5]. In the literature, various techniques
have been reported for the synthesis of BaTiO3 films including pulsed
laser deposition [6], ion-beam sputtering technique [7], sol–gel process
[8], hydrothermal [9–16], and hydrothermal–electrochemical methods
[17–25]. Most of the techniques require temperatures higher than
500 °C to enhance crystallinity of the films except hydrothermal
and hydrothermal–electrochemical methodswhichmay bring the tem-
perature down near or below 100 °C [13–19]. Fig. 1 summarizes the
lowest reaction temperature of the hydrothermal and hydrothermal–
electrochemical synthesis of BaTiO3 films, reported from the literature
including our previous work on the hydrothermal–galvanic couple
(HT–GC) and hydrothermal (HT) synthesis of BaTiO3 films [26–28].
This technique can reduce the reaction temperature down even below
55 °C.
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As reported in our previous work, synthesis of BaTiO3 films by a
HT–GC technique may significantly enhance the growth rates of the
films. During the galvanic couple setup, no external power supply
was required but the growth of BaTiO3 films could be enhanced
significantly by the induced current/voltage. Moreover, unlike the
conventionally used bulk Ti, Ti/Si, or TiO2 substrates [29–34], TiN/Si
substrates were used during the synthesis of BaTiO3. Because of the
low resistivity and highly preferred orientation of TiN, BaTiO3 films
were found to grow directionally over the TiN/Si substrates [26]. Nev-
ertheless, the growth kinetics of synthesizing the films by the HT–GC
technique has not yet been investigated. The galvanic effects during
the synthesis of the films have not yet been explored, either.

Thus, this work was aimed to investigate the growth kinetics of
BaTiO3 films synthesized by the HT–GC method and then to compare
the results with those made by the sole hydrothermal method. The ef-
fect of the galvanic couple setup on the growth of the films has also
been explored.

2. Experiment

TiN filmswere prepared on n-type (100) silicon substrates by DC re-
active sputtering, as reported in our previous work [28]. The deposition
time was 3 min and the resulting thickness of TiN was 400 nm. The
resistivity of the obtained TiN was in the range of 310–350 μΩ cm.

In theHT–GC synthesis, the reaction solutionwas amixture of 0.5 M
Ba(CH3COO)2 (99.5%, J.T. Baker, U.S.A) and 2 M NaOH (99%, Riedel-de
Haën, Germany) alkaline solutions. The reaction temperatures were
kept below 100 °C and hence, no autoclave was required. As for the
served.
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Fig. 2. X-ray diffraction patterns of BaTiO3 over TiN/Si synthesized by the (a) HT–GC
and (b) HT methods at various temperatures for 2 h.

Fig. 1. The lowest reaction temperatures of the hydrothermal and hydrothermal–
electrochemical synthesis of BaTiO3 films, reported from the literature including our
previous work [26–28].
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galvanic couple setup, the working electrode was the TiN/Si specimens
and the counter electrodewas Ptwhile the two electrodeswere directly
connected without applying any external power sources.

Crystalline phases of the films were determined by X-ray diffrac-
tion (XRD) (MPX3, Mac Science, Japan) operated at 40 kV and
30 mA with a Cu Kα excitation source (λCu,Kα = 0.1542 nm). Surface
and cross-sectional morphologies of the films were investigated by
field-emission scanning electron microscopy (FE-SEM) (JSM-6700 F,
JEOL, Japan) operated at 3 kV to minimize the charging effect. Elec-
tron backscatter diffraction (EBSD) (JSM-7001 F, JEOL, Japan) was
also conducted to examine the grain orientations of the obtained
films. The growth kinetics was evaluated by analyzing the coverage
of BaTiO3 over the TiN films as a function of the reaction time. The
coverage of BaTiO3 was calculated by averaging five selected areas
in the SEM micrographs taken from each specimen.

3. Results and discussion

3.1. Crystallinity

Fig. 2 shows the X-ray diffraction patterns of the as-deposited
films and those after the (a) HT–GC and (b) HT syntheses at various
temperatures for 2 h. The as-deposited films were rock-salt struc-
tured TiN (JCPDS 38-1420) [35] with a highly (111) preferred orien-
tation. As shown in the figure, the crystalline cubic BaTiO3 (JCPDS
31-0174) [35] phase was present after the syntheses at the tempera-
tures above 50 °C and grew directionally over TiN-coated substrates.
It is noteworthy that the relative intensities of BaTiO3 obtained in
this referenced HT synthesis were slightly different from those
reported in our previous work [28]. This is mainly due to the different
batch of the specimens, which doesn't affect the conclusions deduced
from this work. The directionally oriented growth of BaTiO3 during
the HT–GC synthesis, i.e., (111) BaTiO3 over (111) TiN, is also very
similar to that for the HT synthesis.

3.2. Morphology

In Fig. 3, the as-deposited TiN seeding layer revealed a nano-grained
structure and BaTiO3 started to nucleate and grow over the seeding
layer for both the (a) HT–GC and (b) HT synthesis. As shown, only a
few BaTiO3 particles grew over the TiN surface at 45 °C. The coverage
of BaTiO3 increased rapidly with the reaction temperature ranging
from 45 °C to 60 °C. At reaction temperatures higher than 60 °C, the
BaTiO3 particles almost covered the whole TiN surface. The trend is
similar to those synthesized by both the HT–GC and HT methods. At a
fixed reaction temperature, the amount of BaTiO3 particles obtained
by using the HT–GC was obviously larger than that synthesized by the
HTmethod in the temperature range of 45 °C−60 °C. It clearly indicates
that the galvanic couple setup can facilitate the growth of BaTiO3. Here,
it also demonstrates that the HT–GC technique can be used to produce
BaTiO3 films at lower reaction temperature (b50 °C), compared to the
HT and hydrothermal–electrochemical methods, as revealed in Fig. 1.

The cross-sectional view of the BaTiO3 films obtained by the HT–
GC method is given in Fig. 4. As-deposited TiN exhibited a character-
istic columnar structure. The TiN films were then slightly consumed
after the syntheses at various temperatures for 2 h. The BaTiO3 parti-
cles were produced, yielding a single layer over the TiN film surface.
That's why the coverage instead of thickness was used for analyzing
the kinetics. It is noteworthy that the interface between TiN and
formed BaTiO3 was rather smooth. Moreover, porosity existed in the
BaTiO3 films. The porosity of the BaTiO3 films can be calculated
based on the theoretical estimation [36] and experimental observa-
tions. Taking the synthesis at 80 °C shown in Fig. 4 as an example,
the consumed thickness of TiN was 19 ± 1 nm that should yield
64 ± 1 nm (3.4 times) of a fully dense BaTiO3 film. However, the ex-
perimentally observed thickness of BaTiO3 was 71 ± 1 nm. That
means the porosity existing in the BaTiO3 film might be about 10%.
The discrepancy between the estimation and the observation may
also stem from the densities used in the calculation since the bulk
and film densities are possibly different and only the former value is
available at the moment.

As mentioned earlier in the XRD analysis, directionally-oriented
growth of the BaTiO3 films was observed over the TiN seeding layer
that exhibited a strong preferred orientation. To further examine
the oriented growth, EBSD was also preformed over different grains
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Fig. 3. FE-SEMmicrographs of surfacemorphology of BaTiO3 synthesized by the (a) HT–GC
and (b) HT methods at various temperatures for 2 h.

Fig. 4. Cross-sectional view of BaTiO3 over TiN/Si synthesized
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of the obtained films. A typical set of micrographs is given in Fig. 5.
Fig. 5a revealed the grains of the films selected for the electron back-
scatter diffraction.

From the obtained Kikuchi pattern of each BaTiO3 grain, as shown
in Fig. 5b, the pole figure of the different grains could be acquired, as
sketched in Fig. 5c. The central point represented the [111] orienta-
tion. The other three points referred to the family of the {111} orien-
tations. All the grains show similar results, which indicated the [111]
preferred growth direction. This verified the directionally oriented
growth of the oxide films, i.e., (111) BaTiO3/(111) TiN. This indicates
that the highly oriented TiN films can be used to design different
directionally-oriented BaTiO3 films by this synthesizing method. That
can be also extended to other similar perovskite oxide/conductive ni-
tride systems.

3.3. Growth kinetics

Tomore accurately quantify the growth kinetics of BaTiO3 over the
TiN seeding layer, the coverage of BaTiO3, y, was fitted to a modified
Avrami–Erofe'ev equation [37–40], as given below:

y ¼ 1− exp −k t−t0ð Þ½ �n ð1Þ

where k is the rate constant, t is the reaction time, t0 is the incubation
time before the formation of BaTiO3, and n is the time exponent con-
stant. Since the coverage of BaTiO3 seemed to proceed by the increase
in numbers of nuclei rather than their growth, as shown in Fig. 3, such
nucleation and growth behavior of BaTiO3 has not been reported
in the literature. Nevertheless, the Avrami–Erofe'ev or modified equa-
tion has been applied to a wide range of studies, including time-
dependence of the nucleation [41], crystallization and phase transfor-
mation in glasses and alloys, metal hydrogenation reactions [42], and
anion exchange reactions in layered materials [43]. Hence, a modified
Avrami–Erofe'ev equation has been tried to analyze the growth kinet-
ics. It turns out that kinetic behavior of the HT–GC and HT syntheses
can be fitted rather well by the equation, as shown in Fig. 6. It indi-
cates that the growth of the films increased quickly with the reaction
time and followed the kinetic model. At fixed reaction time and reac-
tion temperature, the coverage of BaTiO3 synthesized by the HT–GC
method was much larger than that prepared by HT synthesis. The
growth did not occur until the reaction time exceeded the incubation
time, t0. The incubation time decreased rapidly with the temperature.
As the reaction temperature increased from 50 °C to 80 °C, the incuba-
tion timewas reduced from1800 s to 50 s, for theHT–GC synthesis. Ap-
parently higher temperatures can provide energy to overcome the
potential barrier and activate the formation of BaTiO3 particles. More-
over, the galvanic couple setup can also aide significantly the growth
of BaTiO3.

Beside the variation of the incubation time t0 with the reaction tem-
peratures, as sketched in Fig. 7a, other fitting parameters including n
by the HT–GC method at various temperatures for 2 h.
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Fig. 5. (a) The tiled (70°) FE-SEM micrographs of BaTiO3 after the HT–GC synthesis at
80 °C for 10 min. (b) The typical Kikuchi pattern of a selected grain designated in
(a). (c)The pole figure of the selected grains indicating the [111] growth direction.
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and k are shown in Fig. 7b and c. The value of n is associated with the
reaction mechanism, which has been discussed in the literatures [34].
As shown in Fig. 7b, the n-value was close to 1 during the HT synthesis
and was consistent with our previouswork [28], which implies that the
growth of filmswas controlled by phase boundary reactions [34]. As for
the HT–GC synthesis, the n-value was also near 1 in the range of
60 °C−70 °C. Nevertheless, the n-value was higher than 1 at the reac-
tion temperatures below 60 °C, implying that the HT–GC synthesis
Fig. 6. The coverage of BaTiO3 synthesized by the (a) HT–GC and (b) HT methods as a
function of the reaction time at various reaction temperatures. The solid lines are the
fitting curves by using a modified Avrami–Erofe'ev equation.
might be controlled bymore complex reactions. Fig. 7c shows the reac-
tion constant k in logarithm scale against the temperature. The k-values
for the HT–GC synthesiswere larger than those for the HT synthesis and
the difference increased with the temperature, which is apparently due
to the galvanic effect during theHT–GC synthesis. This indicates that the
galvanic effect during the HT–GC synthesis wasmore andmore evident
at higher temperatures and could then enhance the reaction.

The activation energy of forming BaTiO3 could be determined by
fitting the rate constant to the Arrhenius-type equation.

k ¼ k0exp ‐
Q
RT

� �
ð2Þ

where k0 is the pre-exponent constant, Q is the activation energy, R is
the gas constant, and T is the reaction temperature. From the fitting
results, the calculated activation energy for the HT synthesis was
55 ± 4 kJ mol−1 in the temperature range of 60 °C−80 °C, which
is consistent with that reported in our previous work [28]. Neverthe-
less, lnk vs. 1/T for the HT–GC synthesis shows a nonlinear behavior. It
indicates that the HT–GC technique is governed by multiple forma-
tion mechanisms including at least hydrothermal reaction and
galvanic-aided formation. To explore the galvanic couple effects dur-
ing the HT–GC synthesis, the induced currents and corresponding
electric energies were investigated and reported in the later section.

3.4. Galvanic couple effect

It is generally recognized that HT synthesis of BaTiO3 is governed
by a dissolution–precipitation mechanism [44–47]. It has been
reported that TiN would be oxidized in highly concentrated alkaline
solutions [48]:

TiN þ 2OH− þ H2O→HTiO−
3 þ NH3 þ e− ð3Þ

Barium ions could then react with HTiO3
− ions to form barium titanate,

Ba2þ þ HTiO−
3 →BaTiO3 þ Hþ ð4Þ

Since TiN exhibits a certain degree of ionic bonding in addition to
covalent bonding, it may be much easier to dissolve into alkaline so-
lutions than Ti to yield BaTiO3 films, as described in our previous
work for the low-temperature HT synthesis [28]. As given in Eq. (3),
more enhanced dissolution reactions at higher reaction temperatures
would producemore electric charges and then enhance the galvanic ef-
fects. Nucleation of BaTiO3 occurred via the dissolution–precipitation
mechanism. TiN firstly dissolved in alkaline solutions to form HTiO3

−

ions and then reacted with Ba2+ ions to BaTiO3. Because the TiN films
exhibited nanogranular and columnar structure, as shown in Fig. 4,
the dissolution of TiN in alkaline solution might occur at the grain
boundaries which could accumulate high concentration of HTiO3

− ions.
This may yield inhomogeneous nucleation of BaTiO3.

In an electrochemical system, the current is determined by the re-
action rates at the electrodes. As the electrochemical reaction occurs
at the electrode–electrolyte interface, it is called heterogeneous reac-
tion and the reaction rate depends on various factors, such as mass
transfer to the electrode and electron transfer at the electrode surface.
The reaction rate associated with the current density can be expressed
by the following equation [49]:

Rate mols−1cm−2
� �

¼ j
nF

ð5Þ

with j the current density, n the stoichiometric number of electrons in
the electrode reaction, and F the Faraday constant. As shown in Fig. 8,
the in-situ measured (a) current densities and (b) corresponding
electric energies are plotted against the reaction time at various synthe-
sizing temperatures. The competitive reactions of both dissolution of
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Fig. 7. (a) The incubation time t0, (b) the time exponent constant n, versus the reaction temperature and (c) the logarithm k vs. 1/T for both the HT and HT–GC syntheses.
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TiN and the formation of BaTiO3 yield a maximum current density at
each reaction temperature. As shown in Fig. 8a, the maximum current
density increased with reaction temperatures. Higher reaction temper-
atures apparently enhance both reactions, causing higher maximum
current density. The galvanic currents can be divided into three regimes
for a fixed reaction temperature. Initially, the galvanic currents abruptly
decreased to a minimum. Subsequently, the currents increased rapidly
to a maximum and finally returned to a background value. It is possible
that at the beginning TiN films dissolve into alkaline solution and
produce HTiO3

− ions accumulated on the TiN surface, which may
hinder the dissolution reaction and cause the current decrease. This
Fig. 8. (a) Current density and (b) electric energy density vs. reaction time at various
temperatures during the HT–GC synthesis.
time period at which BaTiO3 has not yet been formed can be referred
to the incubation time, as mentioned earlier. Next, the significant gal-
vanic current increase is mainly due to the reactions of Ba2+ ions with
HTiO3

− ions, leading to the formation of BaTiO3 and further dissolution
of TiN. The latter reaction results in the current increase. In our case,
the dissolution of TiN and the precipitation of BaTiO3 occurred concur-
rently at the working electrode, as given in Eqs. (3) and (4). Current
density was enhanced by the dissolution of TiN while was suppressed
by the precipitation of BaTiO3. It is noteworthy that the maximum cur-
rent density occurs at the timewhen half of the TiN surfacewas covered
by BaTiO3. Subsequently, the produced BaTiO3 particles gradually cover
over the TiN film surface and reduce the effective reaction area of the
TiN films, which would hinder the dissolution of TiN and then slowly
suppressed the galvanic current. After reaching full coverage of the
BaTiO3 particles, the galvanic effect is ceased and the galvanic current
then returns to the background value. Since no external voltages or cur-
rentswere applied to the system, the spontaneous currents clearly stem
from the galvanic couple effect.

During the galvanic reactions chemical energy can be transformed
into to electric energy. The output electric energy, evaluated from
measured currents and voltages, as well as reaction time, is also plot-
ted against the reaction time at various temperatures, as sketched in
Fig. 8b. It shows that the electric energy increased rapidly with the re-
action time and then reached a constant value that indicates the TiN
surface was fully covered by BaTiO3 and the galvanic reaction was
self-terminated. The maximum generated electric energy density
was about 1.61 ± 0.05 mJ/cm2, which is almost independent of the
reaction temperature. It is also revealed in the figure that the maxi-
mum electric energy density can be reached much faster at higher re-
action temperatures, since the galvanic reactions are more enhanced
at higher temperatures.
4. Conclusions

Directionally oriented (111) cubic BaTiO3 films have been pro-
duced on the highly oriented (111) TiN layer by the HT–GC method
above 45 °C while below 100 °C. The growth rates of BaTiO3 synthe-
sized by the HT–GC method are much faster than those prepared by
the HT technique from the growth kinetic analysis. Compared to the
HT methods, the HT–GC synthesis is apparently governed by more
complex reaction mechanisms including the galvanic reactions. The
galvanic current density was generated by the dissolution of TiN in al-
kaline solution and was tailored by the formation of BaTiO3 over the
TiN layer. The maximum galvanic current increased with the reaction
temperature while the maximum current occurred at the time when
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half of the TiN surface was covered by BaTiO3. The output electric en-
ergy increased rapidly with the reaction time and finally leveled off at
the full coverage of BaTiO3. The HT–GC method with the aide of gal-
vanic couple effects has great potentials in synthesizing many oxide
materials.

Acknowledgments

The work is supported by the National Science Council of R.O.C.
(Taiwan) under the grant no. NSC 98-2221-E-005-029-MY3. Thanks
also to National Nano Device Laboratories (NDL) for helping in the
preparation of titanium nitride films.

References

[1] R.E. Cohen, Nature 358 (1992) 136.
[2] T. Lee, I.A. Aksay, Cryst. Growth Des. 1 (2001) 401.
[3] G.H. Heartling, J. Vac. Sci. Technol. A 9 (1991) 414.
[4] H. Takahashi, Y. Numamoto, J. Tani, S. Tsuekawa, Jpn. J. Appl. Phys. 45 (2006) 7405.
[5] J. Wang, H. Wan, Q. Lin, Meas. Sci. Technol. 14 (2003) 172.
[6] M.B. Lee, M. Kawasaki, M. Yoshimoto, H. Koinuma, Appl. Phys. Lett. 66 (1995)

1331.
[7] T. Pencheva, M. Nenkov, Vacuum 48 (1997) 43.
[8] M.N. Kamalasanan, N.D. Kumar, S. Chandra, J. Appl. Phys. 76 (1994) 4603.
[9] D. Hennings, M. Klee, R. Waser, Adv. Mater. 3 (1991) 334.

[10] C. Chen, Y. Wei, X. Jiao, D. Chen, Mater. Chem. Phys. 110 (2008) 186.
[11] C.-R. Cho, E. Shi, M.-S. Jang, S.-Y. Jeong, S.-C. Kim, Jpn. J. Appl. Phys. 33 (1994)

4984.
[12] R.R. Bacsa, J.P. Dougherty, L.J. Pilone, Appl. Phys. Lett. 63 (1993) 1053.
[13] A.T. Chien, L. Zhao, M. Colic, J.S. Speck, F.F. Lange, J. Mater. Res. 13 (1998) 649.
[14] E.B. Slamovich, I.A. Aksay, J. Am. Ceram. Soc. 79 (1996) 239.
[15] C.K. Tan, G.K.L. Goh, D.Z. Chi, A.C.W. Lu, B.K. Lok, J. Electroceram. 16 (2006) 581.
[16] C.K. Tan, G.K.L. Goh, Thin Solid Films 515 (2007) 6572.
[17] S. Venigalla, P. Bendale, J.H. Adair, J. Electrochem. Soc. 142 (1995) 2101.
[18] J. Tamaki, G.K.L. Goh, F.F. Lange, J. Mater. Res. 15 (2000) 2583.
[19] P. Bendale, S. Venigalla, J.R. Ambrose, E.D. Verink Jr., J.H. Adair, J. Am. Ceram. Soc.
76 (1993) 2619.

[20] Z. Wu, M. Yoshimura, Solid State Ionics 122 (1999) 161.
[21] M. Yoshimura, S.E. Yoo, M. Hayashi, N. Ishizawa, Jpn. Appl. Phys. 28 (1989) L2007.
[22] K. Kajiyoshi, M. Yoshimura, Y. Hamaji, K. Tomono, T. Kasanami, J. Mater. Res. 11

(1996) 169.
[23] S. Agarwal, G.L. Sharma, Sens. Actuators 85 (2002) 205.
[24] T. Vargas, H. Díaz, J. Am. Ceram. Soc. 80 (1997) 213.
[25] K. Kajiyoshi, Y. Sakabe, M. Yoshimura, Jpn. J. Appl. Phys. 36 (1997) 1209.
[26] Y.-C. Chieh, C.-C. Yu, F.-H. Lu, Appl. Phys. Lett. 90 (2007) 032904.
[27] P.-H. Chan, F.-H. Lu, Thin Solid Films 517 (2009) 4782.
[28] P.-H. Chan, F.-H. Lu, J. Electrochem. Soc. 157 (2010) G130.
[29] R. Bacsa, P.R. Dranathan, J.P. Dougherty, J. Mater. Res. 7 (1992) 423.
[30] S.-B. Cho, J.-S. Noh, D.-Y. Lim, S.-H. Hong, R.E. Riman, Mater. Lett. 57 (2003) 4302.
[31] E. Shi, C.R. Cho, M.S. Jang, S.Y. Jeong, H.J. Kim, J. Mater. Res. 9 (1994) 2914.
[32] C.R. Cho, M.S. Jang, S.Y. Jeong, S.J. Lee, B.M. Lim, Mater. Lett. 23 (1995) 203.
[33] R.I. Walton, F. Millange, R.I. Smith, T.C. Hansen, D. O'Hare, J. Am. Chem. Soc. 123

(2001) 12547.
[34] J.O. Eckert Jr., C.C.H. Houston, B.L. Gersten, M.M. Lencka, R.E. Riman, J. Am. Ceram.

Soc. 79 (1996) 2929.
[35] PDF-2 CDROM, International Center for Diffraction Data, Newtown Square, PA,

2000.
[36] C.-J. Yang, L.-S. Chao, F.-H. Lu, Surf. Coat. Technol. (2012), http://dx.doi.org/

10.1016/j.surfcoat.2012.01.029.
[37] M. Avrami, J. Chem. Phys. 7 (1939) 1103.
[38] M. Avrami, J. Chem. Phys. 8 (1940) 212.
[39] M. Avrami, J. Chem. Phys. 9 (1941) 177.
[40] B.V. Erofe'ev, C. R. (Dokl.) Acad. Sci. L'URSS 52 (1946) 511.
[41] B.J. Kooi, Phys. Rev. B 73 (2006) 54103.
[42] H. Saitoh, A. Machida, Y. Katayama, K. Aoki, Appl. Phys. Lett. 94 (2009) 151915.
[43] R.J. Francis, S. O'brien, A.M. Fogg, P.S. Halasyamani, D. O'Hare, T. Louiseau, G.

Ferey, J. Am. Chem. Soc. 121 (1999) 1002.
[44] W. Xu, L. Zheng, H. Xin, C. Lin, M. Okuyama, J. Electrochem. Soc. 143 (1996) 1133.
[45] M.E. Pilleux, V.M. Fuenzalida, J. Appl. Phys. 74 (1993) 4664.
[46] W.P. Xu, L. Zheng, C. Lin, Philos. Mag. B 77 (1998) 177.
[47] W.P. Xu, L. Zheng, H. Xin, C. Lin, M. Okuyama, J. Mater. Res. 11 (1996) 821.
[48] C.F. Windisch Jr., J.W. Virden, S.H. Elder, J. Liu, M.H. Engelhard, J. Electrochem. Soc.

145 (1998) 1211.
[49] A.J. Bard, L.R. Faulkner, Electrochemical Methods, Wiley Interscience, New York,

2001.

http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0005
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0010
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0230
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0020
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0025
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0030
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0030
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0035
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0040
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0045
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0050
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0055
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0055
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0060
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0065
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0070
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0075
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0080
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0085
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0090
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0095
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0095
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0100
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0105
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0110
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0110
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0115
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0120
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0125
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0130
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0135
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0140
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0145
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0150
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0155
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0160
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0165
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0165
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0170
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0170
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0235
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0235
http://dx.doi.org/10.1016/j.surfcoat.2012.01.029
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0175
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0180
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0185
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0245
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0190
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0250
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0255
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0255
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0200
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0205
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0210
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0215
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0220
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0220
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0225
http://refhub.elsevier.com/S0040-6090(13)01111-5/rf0225

	Hydrothermal–galvanic couple synthesis of directionally oriented BaTiO3 thin films on TiN-coated substrates
	1. Introduction
	2. Experiment
	3. Results and discussion
	3.1. Crystallinity
	3.2. Morphology
	3.3. Growth kinetics
	3.4. Galvanic couple effect

	4. Conclusions
	Acknowledgments
	References


