6,588 research outputs found

    Quantum Computation Based on Retarded and Advanced Propagation

    Get PDF
    Computation is currently seen as a forward propagator that evolves (retards) a completely defined initial vector into a corresponding final vector. Initial and final vectors map the (logical) input and output of a reversible Boolean network respectively, whereas forward propagation maps a one-way propagation of logical implication, from input to output. Conversely, hard NP-complete problems are characterized by a two-way propagation of logical implication from input to output and vice versa, given that both are partly defined from the beginning. Logical implication can be propagated forward and backward in a computation by constructing the gate array corresponding to the entire reversible Boolean network and constraining output bits as well as input bits. The possibility of modeling the physical process undergone by such a network by using a retarded and advanced in time propagation scheme is investigated. PACS numbers: 89.70.+c, 02.50.-r, 03.65.-w, 89.80.+hComment: Reference of particle statistics to computation speed up better formalized after referee's suggestions. Modified: second half of Section I, Section IIC after eq.(7), Section IID and E. Figure unchange

    Feynman graphs and the large dimensional limit of multipartite entanglement

    Full text link
    We are interested in the properties of multipartite entanglement of a system composed by nn dd-level parties (qudits). Focussing our attention on pure states we want to tackle the problem of the maximization of the entanglement for such systems. In particular we effort the problem trying to minimize the purity of the system. It has been shown that not for all systems this function can reach its lower bound, however it can be proved that for all values of nn a dd can always be found such that the lower bound can be reached. In this paper we examine the high-temperature expansion of the distribution function of the bipartite purity over all balanced bipartition considering its optimization problem as a problem of statistical mechanics. In particular we prove that the series characterizing the expansion converges and we analyze the behavior of each term of the series as dd\to \infty.Comment: 29 pages, 11 figure

    Experimental Test of Two-way Quantum Key Distribution in Presence of Controlled Noise

    Full text link
    We describe the experimental test of a quantum key distribution performed with a two-way protocol without using entanglement. An individual incoherent eavesdropping is simulated and induces a variable amount of noise on the communication channel. This allows a direct verification of the agreement between theory and practice.Comment: 4 pages, 3 figure

    Non-Markovian reduced dynamics and entanglement evolution of two coupled spins in a quantum spin environment

    Full text link
    The exact quantum dynamics of the reduced density matrix of two coupled spin qubits in a quantum Heisenberg XY spin star environment in the thermodynamic limit at arbitrarily finite temperatures is obtained using a novel operator technique. In this approach, the transformed Hamiltonian becomes effectively Jaynes-Cumming like and thus the analysis is also relevant to cavity quantum electrodynamics. This special operator technique is mathematically simple and physically clear, and allows us to treat systems and environments that could all be strongly coupled mutually and internally. To study their entanglement evolution, the concurrence of the reduced density matrix of the two coupled central spins is also obtained exactly. It is shown that the dynamics of the entanglement depends on the initial state of the system and the coupling strength between the two coupled central spins, the thermal temperature of the spin environment and the interaction between the constituents of the spin environment. We also investigate the effect of detuning which in our model can be controlled by the strength of a locally applied external magnetic field. It is found that the detuning has a significant effect on the entanglement generation between the two spin qubits.Comment: 9 pages (two-coulumn), 6 figures. To appear in Phys. Rev.

    Decoherence and dephasing in coupled Josephson-junction qubits

    Full text link
    We investigate the decoherence and dephasing of two coupled Josephson qubits. With the interaction between the qubits being generated by current-current correlations, two different situations in which the qubits are coupled to the same bath, or to two independent baths, are considered. Upon focussing on dissipation being caused by the fluctuations of voltage sources, the relaxation and dephasing rates are explicitly evaluated. Analytical and numerical results for the coupled qubits dynamics are provided.Comment: 18 pages, 8 figures include

    Revisiting Deniability in Quantum Key Exchange via Covert Communication and Entanglement Distillation

    Full text link
    We revisit the notion of deniability in quantum key exchange (QKE), a topic that remains largely unexplored. In the only work on this subject by Donald Beaver, it is argued that QKE is not necessarily deniable due to an eavesdropping attack that limits key equivocation. We provide more insight into the nature of this attack and how it extends to other constructions such as QKE obtained from uncloneable encryption. We then adopt the framework for quantum authenticated key exchange, developed by Mosca et al., and extend it to introduce the notion of coercer-deniable QKE, formalized in terms of the indistinguishability of real and fake coercer views. Next, we apply results from a recent work by Arrazola and Scarani on covert quantum communication to establish a connection between covert QKE and deniability. We propose DC-QKE, a simple deniable covert QKE protocol, and prove its deniability via a reduction to the security of covert QKE. Finally, we consider how entanglement distillation can be used to enable information-theoretically deniable protocols for QKE and tasks beyond key exchange.Comment: 16 pages, published in the proceedings of NordSec 201

    Planetary and Other Short Binary Microlensing Events from the MOA Short Event Analysis

    Full text link
    We present the analysis of four candidate short duration binary microlensing events from the 2006-2007 MOA Project short event analysis. These events were discovered as a byproduct of an analysis designed to find short timescale single lens events that may be due to free-floating planets. Three of these events are determined to be microlensing events, while the fourth is most likely caused by stellar variability. For each of the three microlensing events, the signal is almost entirely due to a brief caustic feature with little or no lensing attributable mainly to the lens primary. One of these events, MOA-bin-1, is due to a planet, and it is the first example of a planetary event in which stellar host is only detected through binary microlensing effects. The mass ratio and separation are q = 4.9 +- 1.4 x 10^{-3} and s = 2.10 +- 0.05, respectively. A Bayesian analysis based on a standard Galactic model indicates that the planet, MOA-bin-1Lb, has a mass of m_p = 3.7 +- 2.1 M_{Jup}, and orbits a star of M_* = 0.75{+0.33 -0.41} M_solar at a semi-major axis of a = 8.3 {+4.5 -2.7} AU. This is one of the most massive and widest separation planets found by microlensing. The scarcity of such wide separation planets also has implications for interpretation of the isolated planetary mass objects found by this analysis. If we assume that we have been able to detect wide separation planets with a efficiency at least as high as that for isolated planets, then we can set limits on the distribution on planets in wide orbits. In particular, if the entire isolated planet sample found by Sumi et al. (2011) consists of planets bound in wide orbits around stars, we find that it is likely that the median orbital semi-major axis is > 30 AU.Comment: 47 pages with 14 figure
    corecore