27 research outputs found

    Diazepam actions in the VTA enhance social dominance and mitochondrial function in the nucleus accumbens by activation of dopamine D1 receptors.

    Get PDF
    Benzodiazepines can ameliorate social disturbances and increase social competition, particularly in high-anxious individuals. However, the neural circuits and mechanisms underlying benzodiazepines' effects in social competition are not understood. Converging evidence points to the mesolimbic system as a potential site of action for at least some benzodiazepine-mediated effects. Furthermore, mitochondrial function in the nucleus accumbens (NAc) has been causally implicated in the link between anxiety and social competitiveness. Here, we show that diazepam facilitates social dominance, ameliorating both the competitive disadvantage and low NAc mitochondrial function displayed by high-anxious rats, and identify the ventral tegmental area (VTA) as a key site of action for direct diazepam effects. We also show that intra-VTA diazepam infusion increases accumbal dopamine and DOPAC, as well as activity of dopamine D1- but not D2-containing cells. In addition, intra-NAc infusion of a D1-, but not D2, receptor agonist facilitates social dominance and mitochondrial respiration. Conversely, intra-VTA diazepam actions on social dominance and NAc mitochondrial respiration are blocked by pharmacological NAc micro-infusion of a mitochondrial complex I inhibitor or an antagonist of D1 receptors. Our data support the view that diazepam disinhibits VTA dopaminergic neurons, leading to the release of dopamine into the NAc where activation of D1-signaling transiently facilitates mitochondrial function, that is, increased respiration and enhanced ATP levels, which ultimately enhances social competitive behavior. Therefore, our findings critically involve the mesolimbic system in the facilitating effects of diazepam on social competition and highlight mitochondrial function as a potential therapeutic target for anxiety-related social dysfunctions

    Bonobo personality traits are heritable and associated with vasopressin receptor gene 1a variation

    Get PDF
    Despite being closely related, bonobos and chimpanzees show remarkable behavioral differences, the proximate origins of which remain unknown. This study examined the link between behavioral variation and variation in the vasopressin 1a receptor gene (Avpr1a) in bonobos. Chimpanzees are polymorphic for a ~360 bp deletion (DupB), which includes a microsatellite (RS3) in the 5′ promoter region of Avpr1a. In chimpanzees, the DupB deletion has been linked to lower sociability, lower social sensitivity, and higher anxiety. Chimpanzees and bonobos differ on these traits, leading some to believe that the absence of the DupB deletion in bonobos may be partly responsible for these differences, and to the prediction that similar associations between Avpr1a genotypes and personality traits should be present in bonobos. We identified bonobo personality dimensions using behavioral measures (Sociability(B), Boldness(B), Openness(B), Activity(B)) and trait ratings (Assertiveness(R), Conscientiousness(R), Openness(R), Agreeableness(R), Attentiveness(R), Extraversion(R)). In the present study we found that all 10 dimensions have nonzero heritabilities, indicating there is a genetic basis to personality, and that bonobos homozygous for shorter RS3 alleles were lower in Attentiveness(R) and higher in Openness(B). These results suggest that variations in Avpr1a genotypes explain both within and between species differences in personality traits of bonobos and chimpanzees

    Mapping and Imaging the Aggressive Brain in Animals and Humans

    Get PDF

    Central noradrenergic activity affects analgesic effect of Neuropeptide S

    No full text
    Background Neuropeptide S (NPS) is an endogenous neuropeptide controlling anxiolysis, wakefulness, and analgesia. NPS containing neurons exist near to the locus coeruleus (LC) involved in the descending anti-nociceptive system. NPS interacts with central noradrenergic neurons; thus brain noradrenergic signaling may be involved in NPS-induced analgesia. We tested NPS analgesia in noradrenergic neuron-lesioned rats using a selective LC noradrenergic neurotoxin, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4). Methods A total 66 male Sprague–Dawley rats weighing 350–450 g were used. Analgesic effects of NPS were evaluated using hot-plate and tail-flick test with or without DSP-4. The animal allocated into 3 groups; hot-plate with NPS alone intracerebroventricular (icv) (0.0, 1.0, 3.3, and 10.0 nmol), tail-flick NPS alone icv (0.0 and 10.0 nmol), and hot-plate with NPS and DSP-4 (0 or 50 mg/kg ip). In hot-plate with NPS and DSP-4 group, noradrenaline content in the cerebral cortex, pons, hypothalamus, were measured. Results NPS 10 nmol icv prolonged hot plate (%MPE) but not tail flick latency at 30 and 40 min after administration. DSP-4 50 mg/kg decreased noradrenaline content in the all 3 regions. The NA depletion inhibited NPS analgesic effect in the hot plate test but not tail flick test. There was a significant correlation between hot plate latency (percentage of maximum possible effect: %MPE) with NPS 10 nmol and NA content in the cerebral cortex (p = 0.017, r 2 = 0.346) which noradrenergic innervation arisen mainly from the LC. No other regions had the correlation. Conclusions NPS analgesia interacts with LC noradrenergic neuronal activity

    The effects of the dopamine stabilizer (−)-OSU6162 on aggressive and sexual behavior in rodents

    No full text
    The dopamine stabilizer (−)-OSU61612 dampens locomotion in rodents rendered hyperactive by exposure to a novel environment or treatment with amphetamine, but stimulates locomotion in habituated animals displaying low motor activity, tentatively exerting this profile by selectively blocking extrasynaptic D2 receptors. The major aim of the present study was to explore the possible usefulness of (−)-OSU61612 as an anti-aggressive drug. To this end, the effect of (−)-OSU61612 on isolation-induced aggression in male mice and estrous cycle-dependent aggression in female rats were studied using the resident intruder test; in addition, the possible influence of (−)-OSU61612 on sexual behavior in male mice and on elevated plus maze (EPM) performance in male rats were assessed. (−)-OSU61612 at doses influencing neither locomotion nor sexual activity reduced aggression in male mice. The effect was observed also in serotonin-depleted animals and is hence probably not caused by the antagonism of serotonin receptors displayed by the drug; refuting the possibility that it is due to 5-HT1B activation, it was also not counteracted by isamoltane. (−)-OSU61612 did not display the profile of an anxiogenic or anxiolytic drug in the EPM but caused a general reduction in activity that is well in line with the previous finding that it reduces exploratory behavior of non-habituated animals. In line with the observations in males, (−)-OSU61612 reduced estrus cycle-related aggression in female Wistar rats, a tentative animal model of premenstrual dysphoria. By stabilizing dopaminergic transmission, (−)-OSU61612 may prove useful as a well-tolerated treatment of various forms of aggression and irritability
    corecore