141 research outputs found

    Integration of a nationally procured electronic health record system into user work practices

    Get PDF
    BACKGROUND: Evidence suggests that many small- and medium-scale Electronic Health Record (EHR) implementations encounter problems, these often stemming from users' difficulties in accommodating the new technology into their work practices. There is the possibility that these challenges may be exacerbated in the context of the larger-scale, more standardised, implementation strategies now being pursued as part of major national modernisation initiatives. We sought to understand how England's centrally procured and delivered EHR software was integrated within the work practices of users in selected secondary and specialist care settings. METHODS: We conducted a qualitative longitudinal case study-based investigation drawing on sociotechnical theory in three purposefully selected sites implementing early functionality of a nationally procured EHR system. The complete dataset comprised semi-structured interview data from a total of 66 different participants, 38.5 hours of non-participant observation of use of the software in context, accompanying researcher field notes, and hospital documents (including project initiation and lessons learnt reports). Transcribed data were analysed thematically using a combination of deductive and inductive approaches, and drawing on NVivo8 software to facilitate coding. RESULTS: The nationally led "top-down" implementation and the associated focus on interoperability limited the opportunity to customise software to local needs. Lack of system usability led users to employ a range of workarounds unanticipated by management to compensate for the perceived shortcomings of the system. These had a number of knock-on effects relating to the nature of collaborative work, patterns of communication, the timeliness and availability of records (including paper) and the ability for hospital management to monitor organisational performance. CONCLUSIONS: This work has highlighted the importance of addressing potentially adverse unintended consequences of workarounds associated with the introduction of EHRs. This can be achieved with customisation, which is inevitably somewhat restricted in the context of attempts to implement national solutions. The tensions and potential trade-offs between achieving large-scale interoperability and local requirements is likely to be the subject of continuous debate in England and beyond with no easy answers in sight

    Impaired Rho GTPase activation abrogates cell polarization and migration in macrophages with defective lipolysis

    Get PDF
    Infiltration of monocytes and macrophages into the site of inflammation is critical in the progression of inflammatory diseases such as atherosclerosis. Cell migration is dependent on the continuous organization of the actin cytoskeleton, which is regulated by members of the small Rho GTPase family (RhoA, Cdc42, Rac) that are also important for the regulation of signal transduction pathways. We have recently reported on reduced plaque formation in an atherosclerotic mouse model transplanted with bone marrow from adipose triglyceride lipase-deficient (Atgl−/−) mice. Here we provide evidence that defective lipolysis in macrophages lacking ATGL, the major enzyme responsible for triacylglycerol hydrolysis, favors an anti-inflammatory M2-like macrophage phenotype. Our data implicate an as yet unrecognized principle that insufficient lipolysis influences macrophage polarization and actin polymerization, resulting in impaired macrophage migration. Sustained phosphorylation of focal adhesion kinase [due to inactivation of its phosphatase by elevated levels of reactive oxygen species (ROS)] results in defective Cdc42, Rac1 and RhoA activation and in increased and sustained activation of Rac2. Inhibition of ROS production restores the migratory capacity of Atgl−/− macrophages. Since monocyte and macrophage migration are a prerequisite for infiltrating the arterial wall, our results provide a molecular link between lipolysis and the development of atherosclerosis

    The Structural Biology Knowledgebase: a portal to protein structures, sequences, functions, and methods

    Get PDF
    The Protein Structure Initiative’s Structural Biology Knowledgebase (SBKB, URL: http://sbkb.org) is an open web resource designed to turn the products of the structural genomics and structural biology efforts into knowledge that can be used by the biological community to understand living systems and disease. Here we will present examples on how to use the SBKB to enable biological research. For example, a protein sequence or Protein Data Bank (PDB) structure ID search will provide a list of related protein structures in the PDB, associated biological descriptions (annotations), homology models, structural genomics protein target status, experimental protocols, and the ability to order available DNA clones from the PSI:Biology-Materials Repository. A text search will find publication and technology reports resulting from the PSI’s high-throughput research efforts. Web tools that aid in research, including a system that accepts protein structure requests from the community, will also be described. Created in collaboration with the Nature Publishing Group, the Structural Biology Knowledgebase monthly update also provides a research library, editorials about new research advances, news, and an events calendar to present a broader view of structural genomics and structural biology

    Integrated Personal Health Records: Transformative Tools for Consumer-Centric Care

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Integrated personal health records (PHRs) offer significant potential to stimulate transformational changes in health care delivery and self-care by patients. In 2006, an invitational roundtable sponsored by Kaiser Permanente Institute, the American Medical Informatics Association, and the Agency for Healthcare Research and Quality was held to identify the transformative potential of PHRs, as well as barriers to realizing this potential and a framework for action to move them closer to the health care mainstream. This paper highlights and builds on the insights shared during the roundtable.</p> <p>Discussion</p> <p>While there is a spectrum of dominant PHR models, (standalone, tethered, integrated), the authors state that only the integrated model has true transformative potential to strengthen consumers' ability to manage their own health care. Integrated PHRs improve the quality, completeness, depth, and accessibility of health information provided by patients; enable facile communication between patients and providers; provide access to health knowledge for patients; ensure portability of medical records and other personal health information; and incorporate auto-population of content. Numerous factors impede widespread adoption of integrated PHRs: obstacles in the health care system/culture; issues of consumer confidence and trust; lack of technical standards for interoperability; lack of HIT infrastructure; the digital divide; uncertain value realization/ROI; and uncertain market demand. Recent efforts have led to progress on standards for integrated PHRs, and government agencies and private companies are offering different models to consumers, but substantial obstacles remain to be addressed. Immediate steps to advance integrated PHRs should include sharing existing knowledge and expanding knowledge about them, building on existing efforts, and continuing dialogue among public and private sector stakeholders.</p> <p>Summary</p> <p>Integrated PHRs promote active, ongoing patient collaboration in care delivery and decision making. With some exceptions, however, the integrated PHR model is still a theoretical framework for consumer-centric health care. The authors pose questions that need to be answered so that the field can move forward to realize the potential of integrated PHRs. How can integrated PHRs be moved from concept to practical application? Would a coordinating body expedite this progress? How can existing initiatives and policy levers serve as catalysts to advance integrated PHRs?</p

    A Live-Attenuated HSV-2 ICP0− Virus Elicits 10 to 100 Times Greater Protection against Genital Herpes than a Glycoprotein D Subunit Vaccine

    Get PDF
    Glycoprotein D (gD-2) is the entry receptor of herpes simplex virus 2 (HSV-2), and is the immunogen in the pharmaceutical industry's lead HSV-2 vaccine candidate. Efforts to prevent genital herpes using gD-2 subunit vaccines have been ongoing for 20 years at a cost in excess of $100 million. To date, gD-2 vaccines have yielded equivocal protection in clinical trials. Therefore, using a small animal model, we sought to determine if a live-attenuated HSV-2 ICP0− virus would elicit better protection against genital herpes than a gD-2 subunit vaccine. Mice immunized with gD-2 and a potent adjuvant (alum+monophosphoryl lipid A) produced high titers of gD-2 antibody. While gD-2-immunized mice possessed significant resistance to HSV-2, only 3 of 45 gD-2-immunized mice survived an overwhelming challenge of the vagina or eyes with wild-type HSV-2 (MS strain). In contrast, 114 of 115 mice immunized with a live HSV-2 ICP0− virus, 0ΔNLS, survived the same HSV-2 MS challenges. Likewise, 0ΔNLS-immunized mice shed an average 125-fold less HSV-2 MS challenge virus per vagina relative to gD-2-immunized mice. In vivo imaging demonstrated that a luciferase-expressing HSV-2 challenge virus failed to establish a detectable infection in 0ΔNLS-immunized mice, whereas the same virus readily infected naïve and gD-2-immunized mice. Collectively, these results suggest that a HSV-2 vaccine might be more likely to prevent genital herpes if it contained a live-attenuated HSV-2 virus rather than a single HSV-2 protein

    Enzymatic Glucose Based Bio batteries: Bioenergy to Fuel Next Generation Devices

    Full text link
    [EN] This article consists of a review of the main concepts and paradigms established in the field of biological fuel cells or biofuel cells. The aim is to provide an overview of the current panorama, basic concepts, and methodologies used in the field of enzymatic biofuel cells, as well as the applications of these bio-systems in flexible electronics and implantable or portable devices. Finally, the challenges needing to be addressed in the development of biofuel cells capable of supplying power to small size devices with applications in areas related to health and well-being or next-generation portable devices are analyzed. The aim of this study is to contribute to biofuel cell technology development; this is a multidisciplinary topic about which review articles related to different scientific areas, from Materials Science to technology applications, can be found. With this article, the authors intend to reach a wide readership in order to spread biofuel cell technology for different scientific profiles and boost new contributions and developments to overcome future challenges.Financial support from the Spanish Ministry of Science, Innovation and University, through the State Program for Talent and Employability Promotion 2013-2016 by means of Torres Quevedo research contract in the framework of Bio2 project (PTQ-14-07145) and from the Instituto Valenciano de Competitividad Empresarial-IVACE-GVA (BioSensCell project)Buaki-Sogo, M.; García-Carmona, L.; Gil Agustí, MT.; Zubizarreta Saenz De Zaitegui, L.; García Pellicer, M.; Quijano-Lopez, A. (2020). Enzymatic Glucose Based Bio batteries: Bioenergy to Fuel Next Generation Devices. Topics in Current Chemistry (Online). 378(6):1-28. https://doi.org/10.1007/s41061-020-00312-8S1283786Schlögl R (2015) The revolution continues: Energiewende 2.0. Angew Chem Int Ed 54:4436–4439Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96(9):1457–1486Wang ZL, Wu W (2012) Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew Chem Int Ed 51:11700-11721Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Léger J-M (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105:283Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, Liu Z-S, Wang H, Shen J (2007) A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation. J Power Sources 165:739Boudghere Stambouli A, Traversa E (2002) Solid oxide fuel cells (SOFC): a review of an environmentally clean and efficient source of energy. Renew Sustain Energy Rev 6:433–455Qiao Y, Li CM (2011) Nanostructured catalyst in fuel cells. J Mater Chem 21:4027–4036Edwards PP, Kuznetsov VL, David WIF, Brandon NP (2008) Hydrogen and fuel cells: towards sustainable energy future. Energy Policy 36:4356–4362Kirubakaran A, Jain S, Nema RK (2009) A review on fuel cell technologies and power electronic interface. Renew Sustain Energy 13:2430–2440Kerzenmacher S, Ducree J, Zengerle R, von Stetten F (2008) An abiotically catalyzed glucose fuel cell for powering medical implants: reconstructed manufacturing protocol and analysis of performance. J Power Sources 182:66–75Drake RF, Kusserow BK, Messinger S, Matsuda S (1970) A tissue implantable fuel cell power supply. Trans Am Soc Artif Intern Organs 16:199–205Giner J, Holleck G, Malachesky PA (1973) Eine implantierbare Brennstoffzelle zum Betrieb eines mechanischen Herzens. Phys Chem 77:782–783. https://doi.org/10.1002/bbpc.19730771009Cosnier S, LeGoff A, Holzinger M (2014) Towards glucose biofuel cells implanted in human body for powering artificial organs: review. Electrochem Commun 38:19–23Katz E (2015) Implantable biofuel cells operating in vivo—potential power sources for bioelectronic devices. Bioelectron Med 2:1–12Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006a) Biofuel cells and their development . Biosens Bioelectron 21:2015–2045Cooney MJ, Svoboda V, Lau C, Martin G, Minteer SD (2008) Enzyme catalysed biofuel cells. Energy Environ Sci 1:320–337Cracknell JA, Vincent KA, Armstrong FA (2008) Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem Rev 108:2439–2461Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006b) Biofuel cells and their development. Biosens Bioelectron 21:2015–2045Koch C, Popiel D, Harnisch F (2014) Functional redundancy of microbial anodes fed by domestic wastewater. ChemElectroChem 1:1923–1931Mano N, Mao F, Heller A (2003) Characteristics of a miniature compartment-less glucose−O2 biofuel cell and its operation in a living plant. J Am Chem Soc 125(21):6588–6594Mano N, Mao F, Heller A (2002) A miniature biofuel cell operating in a physiological buffer. J Am Chem Soc 124(44):12962–12963Bruen D, Delaney C, Florea L, Diamond D (2017) Glucose sensing for diabetes monitoring: recent developments. Sensors 17:1866Falk M, Blum Z, Shleev S (2012) Direct electron transfer based enzymatic fuel cells. Electrochim Acta 82:191–202White HB (1976) Coenzymes as fossils of an earlier metabolic state. J Mol Evol 7:101–104Broderick JB (2001) Coenzymes and cofactors. In: eLS. Wiley, Chichester. https://www.els.net. https://doi.org/10.1038/npg.els.0000631Sakurai T, Kataoka K (2007) Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Chem Rec 7:220–229Bankar SB, Bule MV, Singhal RS, Ananthanarayan L (2009) Glucose oxidase—an overview. Biotech Adv 27:489–501Ferri S, Kojima K, Sode K (2011) Review of glucose oxidases and glucose dehydrogenases: a bird’s eye view of glucose sensing enzymes. J Diabetes Sci Technol 5:1068–1076Katz E, MacVittie K (2013) Implanted biofuel cells operating in vivo—methods, applications and perspectives—feature article. Energy Environ Sci 6:2791–2803Ghindilis AL, Atanasov P, Wilkins E (1997) Enzyme catalysed direct electron transfer: fundamentals and analytical applications. Electroanalysis 9:661–674Von Woedtke Th, Fisher U, Abel P (1994) Glucose oxidase electrodes: effect of H2O2 on enzyme activity? Biosens Bioelectron 9:65–71Kleppe K (1966) The effect of H2O2 on glucose oxidase from Aspergillus niger. Biochemistry 5:139–143Zebda A, Godran C, Le Goff A, Holzinger M, Cinquin P, Cosnier S (2011) Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nat Commun 2:370Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5:12653–12672Angione MD, Pilolli R, Cotrone S, Magliulo M, Mallardi A, Palazzo G, Sabbatini L, Fine D, Dodabalapur A, Lioffi N, Torsi L (2011) Carbon based nanomaterials for electronic bio-sensing. Mat Today 14:424–433Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A (2013) Carbon based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7:2891–2897Wang Z, Dai Z (2015) Carbon nanomaterials-based electrochemical biosensors: an overview. Nanoscale 7:6420–6431Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics and sensing. Chem Soc Rev 42:2824–2860Babadi AA, Bagheri S, Abdul Hamid SB (2016) Progress on implantable biofuel cell: nano-carbon functionalization for enzyme immobilization enhancement. Biosens Bioelectron 15:850–860Osadebe I, Leech D (2014) Effect of multi-walled carbon nanotubes on glucose oxidation by glucose oxidase or a flavin-dependent glucose dehydrogenase in redox-polymer-mediated enzymatic fuel cell anodes. ChemElectroChem 1:1988–1993Si P, Huang Y, Wang T, Ma J (2013) Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv 3:3487–3502Putzbach W, Ronkainen NJ (2013) Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors 13(4):4811–4840Walcarius A, Minteer SD, Wang J, Lin Y, Merkoçi A (2013) Nanomaterials for bio-functionalized electrodes: recent trends. J Mater Chem B 1:4878–4908Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3(1):1–9Ivanov I, Vidaković-Koch T, Sundmaker K (2010) Recent advances in enzymatic fuel cells; experiments and modelling. Energies 3:803–846Nguyen HH, Kim M (2017) An overview of techniques in enzyme immobilization. Appl Sci Converg Technol 26(6):157–163Fu J, Reinhold J, Woodbury NW (2011) Peptide-modified surfaces for enzyme immobilization. PLoS One 6(4):e18692Lee DH, Park CH, Yeo JM, Kim SW (2006) Lipase immobilization on silica gel using a cross-linking method. J Ind Eng Chem 12(5):777–782Szymańska K, Bryjak J, Jarzębski AB (2009) Immobilization of invertase on mesoporous silicas to obtain hyper active biocatalysts. Top Catal 52:1030–1036Al-Lolage F, Meneghello M, Ma S, Ludwig R, Barlett PN (2017) A flexible method for the stable, covalent immobilization of enzymes at electrode surfaces. ChemElectroChem 4:1528–1534Gutierrez-Sanchez C, Shleev S, De Lacey AL, Pita M (2015) Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode. Chem Pap 69:237–240Pita M, Gutierrez-Sanchez C, Toscano MD, Shleev S, De Lacey AL (2013) Oxygen biosensor based on bilirubin oxidase immobilized on a nanostructured gold electrode. Bioelectrochemistry 94:69–74Vaz-Dominguez C, Campuzano S, Rüdiger O, Pita M, Gorbacheva M, Shleev S, Fernandez VM, de Lacey LA (2008) Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition. Biosens Bioelectron 24(4):531–537Gutiérrez-Sánchez C, Jia W, Beyl Y, Pita M, Schuhmann W, de Lacey LA, Stoica L (2012) Enhanced direct electron transfer between laccase and hierarchical carbon microfibers/carbon nanotubes composite electrodes. Comparison of three enzyme immobilization methods. Electrochim Acta 82:218–223Lv Y, Jin S, Wang Y, Lun Z, Xia C (2016) Recent advances in the application of nanomaterials in enzymatic glucose sensors. J Iran Chem Soc 13(10):1767–1776Zhao C, Gai P, Song R, Chen Y, Zhang J, Zhu J-J (2017) Nanostructured material-based biofuel cells: recent advances and future prospects. Chem Soc Rev 46:1545–1564Yu EH, Scott K (2010) Enzymatic biofuel cells—fabrication of enzyme electrodes. Energies 3:23–42Minteer SD, Atanassov P, Luckarift HR, Johnson GR (2013) New materials for biological fuel cells. Mater Today 15(4):166–173Sarma AK, Vatsyayan P, Goswami P, Minteer SD (2009) Recent advances in material science for developing enzyme electrodes. Biosens Bioelectron 24:2313–2322Jesionowski T, Zdarta J, Krajewska B (2014) Enzyme immobilization by adsorption: a review. Adsorption 20:801–821Sardar M, Gupta MN (2005) Immobilization of tomato pectinase on Con A-Seralose 4B by bioaffinity layering. Enzyme Microbial Technol 37:355–359Sheldon RA (2011) Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl Microbiol Biotechnol 92:467–477Velasco-Lozano S, López-Gallego F, Mateos-Díaz JC, Favela-Torres E (2015) Cross-linked enzyme aggregates (CLEA) in enzyme improvement—a review. Biocatalysis 1:166–177Cosnier S (1999) Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosen Bioelectron 14:443–456Heller A (1990) Electrical wiring of redox enzymes. Acc Chem Res 29:128–134Heller A (1992) Electrical connection of enzyme redox centres to electrodes. J Phys Chem 96:3579–3587Martins MVA, Pereira AR, Luz RAS, Iost RM, Crespilho FN (2014) Evidence of short-range electron transfer of a redox enzyme on graphene oxide electrodes. Phys Chem Chem Phys 16:17426–17436Luz RAS, Pereira AR, de Souza JCP, Sales FCPF, Crespilho FN (2014) Enzyme biofuel cells: thermodynamics. Kinetics and challenges in applicability. ChemElectroChem 1(11):1751–1777Neto SA, De Andrade AR (2013) New energy sources: the enzymatic biofuel cell. J Braz Chem Soc 24(12):1891–1912Rapoport BI, Kedzierski JT, Sarpeshkar R (2012) A glucose fuel cell for implantable brain–machine interfaces. PLoS One 7(6):6 e38436Zebda A, Alcaraz J-P, Vadgama P, Shleev S, Minteer SD, Boucher F, Cinquin P, Martin DK (2018) Challenges for successful implantation of biofuel cells. Bioelectrochemistry 124:57–72Ferraris RP, Diamond J (1997) Regulation of intestinal sugar transport. Physiol Rev 77:257–301Sprague JE, Arbeláez AM (2011) Glucose counterregulatory responses to hypoglicemia. Pediatr Endocrinol Rev 9:463–475Slaughter G, Kulkarni T (2019) Detection of human plasma glucose using a self-powered glucose biosensor. Energies 12:825Rathee K, Dhull V, Dhull R, Singh S (2016) Biosensors based on electrochemical lactate detection: a comprehensive review. Biochem Biophys Rep 5:35–54Koushanpour A, Gamella M, Katz E (2017) A biofuel cell based on biocatalytic reactions of lactate on both anode and cathode electrodes—extracting electrical power from human sweat. Electroanalysis 29:1602–1611Yao Y, Li H, Wang D, Liu C, Zhang C (2017) An electrochemiluminescence cloth-based biosensor with smartphone-based imaging for detection of lactate in saliva. Analyst 142:3715–3724Pankratov D, González-Arribas E, Blum Z, Shleev S (2016) Tear based bioelectronics. Electroanalysis 28:1250–1266Krogstad AL, Jansson PA, Gisslen P, Lönnroth P (1996) Microdialysis methodology for the measurement of dermal interstitial fluid in humans. Br J Dermatol 134(6):1005–1012Bandodkar AJ, Wang J (2016) Wearable biofuel cells: a review. Electroanalysis 28:1188–1200Jia W, Valdés-Ramírez G, Bandodkar AJ, Windmiller JR, Wang J (2013) Epidermal biofuel cells: energy harvesting from human perspiration. Angew Chem Int Ed 52:1–5Jeerapan I, Sempionatto JR, Pavinatto A, You J-M, Wang J (2016) Stretchable biofuel cells as wearable textile-based self-powered sensors. J Mater Chem A 4:18342–18353Valdés-Ramírez G, Li Y-G, Kima J, Jia W, Bandodkar AJ, Nuñez-Flores R, Miller PR, Wu S-Y, Narayan R, Windmiller JR, Polsky R, Wang J (2016) Microneedle-based self-powered glucose sensor. Electrochem Commun 47:58–62Gamella M, Koushanpour A, Katz E (2018) Biofuel cells—activation of micro- and macro- electronic devices. Bioelectrochemistry 119:33–42Mano N, Mao F, Shin W, Chen T, Heller A (2003) A miniature biofuel cell operating at 0.78 V. Chem Commun 20:518–519Shi B, Li Z, Fan Y (2018) Implantable energy harvesting devices. Adv Mater 30:1801511MacVittie K, Halámek J, Halámková L, Southcott M, Jemison WD, Lobel R, Katz E (2013) From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells. Energy Environ Sci 6:81–86Szczupak A, Halámek J, Halámková L, Bocharova V, Alfonta L, Katz E (2012) Living battery—biofuel cells operating in vivo in clams. Energy Environ Sci 5:8891–8895Southcott M, MacVittie K, Halámek J, Halámková L, Jemison WD, Lobel R, Katz E (2013) A pacemaker powered by an implantable biofuel cell operating under conditions mimicking the human blood circulatory system—battery not included. Phys Chem Chem Phys 15:6278–6283MacVittie K, Conlon T, Katz E (2015) A wireless transmission system powered by an enzyme biofuel cell implanted in an orange. Bioelectrochemistry 106:28–33Aghahosseini H, Ramazani A, Asiabi PA, Gouranlou F, Hosseini F, Rezaei A, Min B-K, Joo SW (2016) Glucose-based biofuel cells: nanotechnology as a vital science in biofuel cell performance. Nanochem Res 1(2):83–204Zebda A, Cosnier S, Alcaraz J-P, Holzinger M, Le Goff A, Gondran C, Boucher F, Giroud F, Gorgy K, Lamraoui H, Cinquin P (2013) Single glucose biofuel cells implanted in rats power electronic devices. Sci Rep 2013:1516Ichi-Ribault SE, Alcaraz J-P, Boucher F, Boutaud B, Dalmolin R, Boutonnat J, Cinquin P, Zebda A, Martin DK (2018) Remote wireless control of an enzymatic biofuel cell implanted in a rabbit for 2 months. Electrochim Acta 269:360–366Bandodkar A (2017) Review—wearable biofuel cells: past, present and future. J Electrochem Soc 164(3):H3007–H3014Coman V, Ludwig R, Harreither W, Haltrich D, Gorton L, Ruzgas T, Shleev S (2010) A direct electron transfer-based glucose/oxygen biofuel cell operating in human serum. Fuel Cells 10(1):9–16Shoji K, Akiyama Y, Suzuki M, Nakamura N, Ohno H, Morishima K (2016) Biofuel cell backpacked insect and its application to wireless sensing. Biosens Bioelectron 78:390–395Reuillard B, Abreu C, Lalaoui N, Le Goff A, Holzinger M, Ondel O, Buret F, Cosnier S (2015) One-year stability for a glucose/oxygen biofuel cell combined with pH reactivation of the laccase/carbon nanotube biocathode. Bioelectrochemistry 106:73–76Sales FCPF, Iost RM, Martins MVA, Almeida MC, Crespilho FN (2013) An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes. Lab Chip 13:468Falk M, Narvez Villarrubia CW, Babanova S, Atanassov P, Shleev S (2013) Biofuel cells for biomedical applications: colonizing the animal kingdom. ChemPhysChem 14:2045–2058Rasmussen M, Ritzmann RE, Lee I, Pollack AJ, Scherson D (2012) An implantable biofuel cell for a live insect. J Am Chem Soc 134(3):1458–1460Halámková L, Halámek J, Bocharova V, Szczupak A, Alfonta L, Katz E (2012) Implanted biofuel cell operating in a living snail. J Am Chem Soc 134:5040–5043Cinquin P, Gondran C, Giroud F, Mazabrard S, Pellisier A, Boucher F, Alcaraz J-P, Gorgy K, Lenouvel F, Mathé S, Porcu P, Cosnier S (2010) A glucose biofuel cell implanted in rats. Plos One 5(5):e010476Chen C, Xie Q, Yang D, Xiao H, Fu Y, Tan S, Yao S (2013) Recent advances in electrochemical glucose biosensors: a review. RSC Adv 3:4473–4491Andoralov V, Falk M, Suyatin DB, Granmo M, Sotres J, Ludwig R, Popov VO, Schouenborg J, Blum Z, Shleev S (2013) Biofuel cell based on microscale nanostructured electrodes with inductive coupling to rat brain neuronsVerbeek MM, Leen WG, Willemsen MA, Slats D, Claassen JA (2016) Hourly analysis of cerebrospinal fluid glucose shows large diurnal fluctuations. J Cereb Blood F Met 36(5):899–902González-Guerrero MJ, Del Campo FJ, Esquivel JP, Leech D, Sabaté N (2017) Paper-based microfluidic biofuel cell operating under glucose concentrations within physiological range. Biosens Bioelectron 90:475–480Takeuchi ES, Leising RA (2002) Lithium batteries for biomedical applications. MRS Bull 27(8):624–627Bock DC, Marschilok A, Takeuchi KJ, Takeuchi ES (2012) Batteries used to power implantable biomedical devices. Electrochim Acta 84:155–164Greatbatch W, Lee JH, Mathias W, Eldridge M, Moser JR, Schneider AA (1971) The solid-state lithium battery: a new improved chemical power source for implantable cardiac pacemaker. IEEE Trans Biomed Eng 18(5):317–324Liu Y, Dong S (2007) A biofuel cell with enhanced power output by grape juice. Electrochem Commun 9(7):1423–1427Choi S, Lee H, Ghaffari R, Hyeon T, Kim D-H (2016) Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 28:4203–4218Zhou L, Mao J, Ren Y, Han ST, Roy VAL, Zhou Y (2018) Recent advances of flexible data storage devices based on organic nanoscale materials. Small 14(10):1703126Gwon H, Kim H-S, Lee KU, Seo D-H, Park YC, Lee Y-S, Ahn BT, Kong K (2011) Flexible energy storage devices based on graphene paper. Energy Environ Sci 4:1277–1283Pang C, Lee C, Suh K-Y (2013) Recent advances in flexible sensors for wearable and implantable devices. J Appl Pol Sci 130:1429–1441Bandodkar AJ, Wang J (2014) Non-invasive wearable electrochemical sensors: a review. Trends Biotech 32(7):363–371Bandodkar AJ, Uia W, Wang J (2015) Tatto-based wearable electrochemical devices: a review. Electroanalysis 27(3):562–572Reid RC, Minteer SD, Gale BK (2015) Contact lens biofuel cell tested in a synthetic tear solution. Biosens Bioelectron 68:142Falk M, Andoralov V, Blum Z, Sotres J, Suyatin DM, Ruzgas T, Arnebrant T, Shleev S (2012) Biofuel cells as a power source for electronic contact lenses. Biosens Bioelectron 37(1):38–45Falk M, Andoralov V, Silow M, Toscano MD, Shleev S (2013) Miniature biofuel cell as a potential power source for Glucose-sensing contact lenses. Anal Chem 85(13):6342–6348Reid R, Jones SR, Hickey DP, Minteer SD, Gale BK (2016) Modeling carbon nanotubes connectivity and surface activity in a contact lens biofuel cell. Electrochim Acta 203:30–40Blum Z, Pankratov D, Shleev S (2014) Powering electronic contact lenses: current achievements, challenges and perspective. Expert Rev Ophthalmol 9(4):269–273Xiao X, Siepenkoetter T, Conghaile PÓ, Leech D, Magner E (2018) Nanoporous gold-based biofuel cell on contact lenses. ACS Appl Mater Interfaces 10(8):7107–7116Yang X-Y, Tian G, Jiang N, Su B-L (2012) Immobilization technology: a sustainable solution for biofuel cell design. Ener Environ Sci 5:5540–5563Mano N (2019) Engineering glucose oxidase for bioelectrochemical applications. Bioelectrochemistry 128:218–240Mate DM, Gonzalez-Perez D, Falk M, Kittl R, Pita M, De Lacey LA, Ludwig R, Shleev S, Alcalde M (2013) Blood tolerant caccase by directed evolution. Chem Biol 20:223–231Zhang L, Carucci C, Reculusa S, Goudeau B, Lefrançois P, Gounel S, Mano N, Kuhn A (2019) Rational design of enzyme-modified electrodes for optimized bioelectrocatalytic activity. ChemElectroChem 6(19):4980–4984Arechederra MN, Addo PK, Minteer SD (2011) Poly(neutral red) as a NAD+ reduction catalyst and a NADH oxidation catalyst: towards the development of a rechargeable biobattery. Electrochim Acta 56:1585Yang Y, Wang ZL (2015) Hybrid energy cells for simultaneously harvesting multi-types of energies. NanoEnergy 14:245–256Hansen BJ, Liu Y, Yang R, Wang ZL (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4:3647Song K, Han JH,

    Key steps for effective breast cancer prevention

    Get PDF

    Harmful Elements in Estuarine and Coastal Systems

    Get PDF
    Estuaries and coastal zones are dynamic transitional systems which provide many economic and ecological benefits to humans, but also are an ideal habitat for other organisms as well. These areas are becoming contaminated by various anthropogenic activities due to a quick economic growth and urbanization. This chapter explores the sources, chemical speciation, sediment accumulation and removal mechanisms of the harmful elements in estuarine and coastal seawaters. It also describes the effects of toxic elements on aquatic flora and fauna. Finally, the toxic element pollution of the Venice Lagoon, a transitional water body located in the northeastern part of Italy, is discussed as a case study, by presenting the procedures adopted to measure the extent of the pollution, the impacts on organisms and the restoration activities
    corecore